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Abstract—Analysis of biomedical images requires attention 

to image features that represent a small fraction of the total 

image size. A rapid method for eliminating unnecessary detail, 

analogous to pre-attentive processing in biological vision, 

allows computational resources to be applied where most 

needed for higher-level analysis. In this report we describe a 

method for bottom up merging of pixels into larger units based 

on flexible saliency criteria using a method similar to 

structured adaptive grid methods used for solving differential 

equations on physical domains. While creating a multiscale 

quadtree representation of the image, a saliency test is applied 

to prune the tree to eliminate unneeded details, resulting in an 

image with adaptive resolution. This method may be used as a 

first step for image segmentation and analysis and is inherently 

parallel, enabling implementation on programmable hardware 

or distributed memory clusters. 

I. INTRODUCTION 

Extracting relevant information from complex images is 

challenging in part because images must be processed at a 

pixel level, even when the scale of objects of interest is 

much larger. A key attribute of human vision is the ability to 

rapidly filter out large amounts of irrelevant data and extract 

useful information from a few salient parts of the whole 

visual scene 
1
. Determination of what is important and what 

is clutter depends on the context. Biological vision is 

hierarchical process that involves a rapid, pre-attentive 

reduction of data volume followed by higher level 

perception based on conscious recognition of expected 

shapes 
1,2

. The first step in this hierarchy must be fast and 

relatively simple, while still capturing the most important 

information. The algorithm presented here is intended as a 

structured digital analog to the low-level, data-driven pre-

attentive processing that occurs in the retina before signals 

are sent through the optic nerve, where data volumes are 

reduced by up to four orders of magnitude
3
. 

Structured adaptive mesh refinement methods have been 

developed for large three-dimensional simulations of 

physical systems to focus computational resources only 

where high resolution is needed
4
. Since pixels in an image 

stack are arranged in a uniform grid structured adaptive 

mesh methods may be usefully adopted for neural image 

representation. A key issue for creating adaptively refined 

meshes is the criterion used to decide when to divide a block 

into smaller blocks. The refinement criterion determines 

which details will be retained and which are unimportant. A 

refinement strategy based on pixel brightness variation is 

described for the particular images shown here. However, 

the method is flexible so that alternative criteria may be 

defined that use image features or characteristics, such as 

measures based on texture or other derived quantities, may 

be implemented as alternative refinement criteria. The intent 

of this method is not to enhance images, but to provide a 

fast, efficient means for reliably reducing the amount of 

information necessary to represent the essential features in 

an image for rapid analysis, key feature extraction or storage 

and compression.  

II. METHOD 

A bottom-up approach to image decomposition is 

implemented. The quadtree is pruned using a saliency 

criterion while the tree is being constructed, thus requiring 

only one pass through the data. Saliency tests discussed here 

are based on colors, but relatively simple tests that use 

texture or other image characteristics are possible. The 

resulting structured multiscale image (SMI) significantly 

reduces the number of data points needed for to represent the 

essential features and appropriate detail in an image. The 

assumption is that this is needed because large numbers of 

images or image stacks must be processed and the results of 

processing stored. 

A. Multiscale Image Decomposition 

Without loss of generality, suppose that an image is 2
N
 x 2

N
 

pixels. The entire image is defined to be a single node or 

superpixel of level zero. The color of a superpixel is the 

mean of all pixels contained therein. Level N in this case 

refers to the collection of all single pixels. Starting with the 

upper left corner of the image, sets of pixels may be 

combined to create superpixels of size 2x2, creating a level 

N-1 image. Similarly, sets of 4 nodes at level N-1 may be 
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combined to create larger superpixels. The four pixels that 

make up a node at the next level are children of that node. 

This process is used to create a quadtree structure. Each 

block of four pixels is tested for salience and a parent node 

created. Color is the property of interest in the examples 

discussed here. The color of each parent node is the mean 

color of all of its children. As soon as a parent node is 

created, the child nodes are tested for salience. Hereafter 

‘salience’ will refer to blocks that pass the refinement 

criterion. That is, salient blocks or pixels are determined to 

contain important details and should not be merged into 

larger blocks. Figure 1 illustrates how pixels are merged to 

create larger blocks of uniform color. Leaves that are higher 

up in the quadtree represent larger blocks. We note that 

pruning a quadtree representation of an image is 

conceptually equivalent to pruning a decision tree. In both 

cases, the goal is to efficiently reduce the amount of data 

while retaining the most important information. The process 

is entirely bottom-up, requiring a single depth-first traversal 

of the tree as it is constructed. Numbers in figure 1 indicate 

the order of traversal in this example. 

The depth of the quadtree can be predetermined if single 

pixel resolution is not required for the objects in the image 

or is not required for the analysis to be done. The number of 

levels allowed for decomposing the image determines the 

amount of detail retained. In some cases, restricting the 

decomposition to fewer levels is justified and will greatly 

reduce the size of the image data structure.  If the maximum 

depth of the quadtree is set to be N-1 in an image that is a 

2
N
x2

N
 pixels, then blocks of 4 pixels are averaged uniformly 

throughout the image initially. 

 

Figure 1. Pruning a quadtree. The first two pixels are both red, so the parent 

node is also colored red. This information is used to determine whether to 

prune the children or not.  Numbers indicate the order of traversal in this 

example. 

B. Pruning and Saliency Criterion 

Fast elimination of unnecessary detail in an image requires a 

simple, robust test that effectively distinguishes where fine 

detail is important and where it is irrelevant. As with 

biological vision, relevance depends on the immediate image 

analysis needs. Figure 2 shows histology sections where the 

pathologist is primarily interested in the small dark blue 

objects in this image. The dark blue pixels in this image 

have mean RGB values near (125,75,150). These values are 

distinctly different from the pink and white regions in the 

rest of the image. A simple criterion is then to classify the 

color of each child node of a given node in succession as 

being either dark-bluish-purple or not.  

The actual test used for this figure was to classify every node 

as belonging to a dark region of interest or not by computing 

a least-squares color distance. If any two child nodes belong 

to different classes, that particular node contains salient 

detail and all of the child nodes are labeled as leaves, unless 

a node is already defined to be a branch with refined or child 

nodes of interest. Although some detail is lost in this 

process, the primary reason for executing this process on an 

image is to discard details that are deemed irrelevant for a 

particular the purpose. All details concerning edges between 

dark blue regions and background are retained in this case 

because the saliency criterion requires it. Other details that 

are lost are considered irrelevant for the purpose of interest. 

a. b.   

c.  
Figure 2. Histology section. a. Original image. b. Multiscale image. c. False 

color is used to show the superpixels used in the multiscale image. The 

multiscale image has 60:1 compression, yet salient fine detail is retained. 

Each node of the reconstructed image has the average color of all the 
original pixels in its region.  

III. RESULTS 

Another example of reducing data volume is shown in 

Figure 3. In this histology section the amount of data is 

reduced by a factor of 60 and still retains image features that 

are considered important, which, in this case, is to determine 

the fractional volume of the darker blue regions. 

Segmentation and analysis of the image in 3.c is 

considerably easier than in the original image. 

The process of pruning pixels in the quadtree is analogous to 

pruning a neural arbor or a binary decision tree. Initially all 

connections are made as every pixel is connected to a parent 
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node and all the details are retained. Pruning proceeds to 

eliminate unnecessary branches that contain little new 

information. Thus, if four child nodes are the same color, 

they contain no more information than the single parent cell, 

and the cost of maintaining that extra information is not 

justified. The resulting structure is a more efficient 

representation of the information content of the image. The 

process entailed here is similar to the backward pruning used 

in building an efficient decision tree 
5
. 

 
Figure 3. Histology section. a. Original image. b. Expanded view of original 

image in region outlined by yellow line. c. Multiscale image after 60:1 

compression showing fine detail is retained. Each node of the reconstructed 
image has the average color of all the original pixels in its region.  

The merge criterion determines what details are significant 

and must be kept and what variation is irrelevant and can be 

merged with neighboring blocks. In the examples shown 

here, only color or brightness variation among child nodes 

has been used to determine pruning in the examples shown 

here, although this can be generalized to use texture or other 

derived characteristics
6
.  

When the salient features in an image contain a relatively 

small fraction of the total area of the pixels, the data 

compression is correspondingly larger. The salient features 

in figure 4.a are the total area and number of small dark 

regions. Using the same pruning criterion as in previous 

images, the total number of superpixels required to represent 

the image is reduced by a factor of 400, shown in 4.b. Edge 

details near the dark regions are preserved at single pixel 

resolution, while unessential detail in the pink regions is 

merged into larger blocks. 

a.  b.  
Figure 4. Histology section. a. original image. b. multiscale image, 400:1 

compression. When the salient information is sparse, compression is large 

while information loss is small. 

 

Parallel implementation on clusters is relatively 

straightforward algorithmically. Image data is processed in a 

layered fashion. For a 2
N
x2

N
 image, N-2 steps are required 

to fully decompose the image. It is assumed that level 1, 

with four 2
N-1

x2
N-1

 subregions is the final step. As many as 

2
N-1

 processors can be utilized to perform the averaging and 

pruning operation on level N-1, for which the child nodes 

are the original image pixels. Processing on level N-2 can 

begin as soon as each set of four child nodes on level N-1 

are completed. On each level, an independent process will 

involve four additions and a division to compute the mean 

value of the parent node, computations to classify each of 

the child nodes, and a test to decide whether to prune or 

retain the child nodes. Once a decision has been made to not 

prune, all ancestors of that node will be retained and no 

testing or averaging is needed. Note that computations on 

each level involve only values at the level immediately 

below, thus the original pixel values are used only once. 

IV. CONCLUSION 

The algorithm presented here differs from filtering with a 

specified kernel and standard morphological operations such 

as opening and closing in that the filtering or merging is 

applied selectively in the image. The merge or refinement 

criterion determines where important image details are, such 

as edges or fine structures. The refinement criterion 

identifies regions where merging will not result in loss of 

essential information. The key here is to determine how 

identify regions in the image where detail must be retained. 

The refinement criterion discussed and used for examples in 

this paper works quite well for the images shown and may 

be appropriate for a wide range of medical images. Once that 

criterion is set, the algorithm may be used for compression 

to enable fast analysis of the image or efficient storage of 

results. Careful attention to the saliency or refinement 

criterion must be given to adapt this method for specific 

applications, as this determines what details or information 

in the image is essential and must be retained. 

a.  b.  

Figure 5. a. original image. b. multiscale image, A maximum projection 

compression of 85 images from a stack of sub-mandibular ganglion (SMG) 

neuron images is shown. The images in the original stack are each 

1024x1024 pixels, resulting in approximately 89 million pixels in the 

image. Structured multiscale adaptive meshing was used to reduce the stack 

to 73,551 uniformly colored superpixels. Note that fine edge detail is 

retained, while noise reduction is automatic. Brightness enhanced in 

original to emphasize noise. 

 

The efficiency of adaptive meshing depends upon how much 

essential information is contained in the image volume. That 

is, large data volume reduction is possible when large 

relatively homogenous regions exist in the image stack that 

can be summarized by a single uniform block. Figures 2 and 

3 contain a great deal of information on relatively small 

scales, but larger than single pixels for most features. In 
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figure 5, a projection from a 3D stack of images of 

reconstructed neurons is shown. A statistical salience 

criterion was used that takes into account the node size as 

well as variability, as in Nock and Nielson (2004)
7
. Data 

compression is rather large, greater than 1000:1, and noise 

filtering is an automatic consequence of the pruning process. 

Random variation in small blocks was not statistically 

significant where the noise was scattered. 

After pruning, simple thresholding was applied to dark 

nodes in figure 5 to and they were all set to black. Since this 

image is monocolor, segmentation is relatively simple after 

the pruning and thresholding operations. Relatively small 

amounts of information are sufficient to represent the image 

in figure 5 and the pruning process has eliminated 

unnecessary detail creating a more efficient representation of 

the essential details of the neural arbor in the original image 

stack. The amount of detail required in an image depends to 

a large extend on the questions to be answered. For many 

fundamental questions in neural imaging, the precise size 

and outline of axons and cell bodies is not critical.  

When single pixel resolution is not required, the 

maximum number of levels to use in the initial octree 

decomposition can be limited. Figure 6 shows segmented 

images that use minimum block sizes of 1
3
, 2

3
, and 4

3
 

respectively when SMI is applied to the segmented image 

stack in figure 4. Visually, the images for the first two 

compression levels are nearly indistinguishable. Some detail 

appears to be lost in the lowest resolution image, but a 

compression ratio of greater than 10,000:1 was attained. 

a.  b.  

Figure 6. The SMI image from figure 5 (b) was further processed by 

restricting the smallest superpixel to 2x2 (a) and 4x4 (right). Total image 

compression from the original is 3000:1 and 10,000:1 respectively. 

The SMI algorithm presented is primarily used as a rapid 

pre-processing step for reducing the amount of information 

in an image before more complex and computationally 

intensive segmentation or feature classification operations. 

The salience test may be defined appropriately for the 

particular application. For the structured multiscale process 

to be significantly faster than later processing, the salience 

test must be relatively simple and fast. With appropriate 

salience tests, noise elimination and edge detection are 

automatic. The latter is achieved when boundaries are 

defined by a well-defined difference in color, brightness, or 

other easily calculated property in neighboring pixels or 

superpixels. 

The SMI algorithm may be run on a mono color or 

segmented image to provide an optimal data reduction. Each 

region in the structured decomposition will be represented 

by as large a superpixel as possible. For real-time 

applications, such as medical devices that process images, 

the algorithm may be implemented in programmable 

hardware to enable very fast reduction of image information. 

An ImageJ plugin will be made available that implements 

the SMI algorithm and will also provide methods for 

computing with structured multiscale images, such as 

nearest neighbor searching and extracting images with 

specified levels of resolution to enable further image 

analysis to be carried out much more efficiently than 

working with the original image pixels. 
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