
 
 

 

  

Abstract— Recently, the notions of Compressed Sensing (CS) 
have attracted attention as an innovative concept in signal 
processing. In this exploratory paper, a CS-based video 
compression approach suitable for wireless capsule endoscopy is 
proposed. In general, the amount of video data generated by 
capsule endoscopy is so large that video compression is the best 
way to lower the communication bandwidth and save the RF 
transmitting power. However, due to power limitation and 
small size conditions, traditional video compression techniques 
are not appropriate. Applying state-of-the-art CS theory may 
significantly reduce power consumption and memory of video 
compressor, thanks to its low computational complexity. The 
proposed approach is based on YUV color space conversion, 
blocking, zigzag scan and CS measuring. Experimental results 
show the feasibility of the proposed idea and that future 
improving works are necessary. 

I. INTRODUCTION 

astrointestinal (GI) endoscope has been widely 
applied for diagnose of diseases: celiac disease, vascular 

disorders, Crohn's Disease, benign and malignant tumors of 
the small intestine, and medication related small bowel injury. 
Nowadays, there are two classes of GI endoscope: the wired 
endoscope and the wireless capsule endoscope. The former 
enables efficient diagnosis using real video and biopsy 
samples. However, it causes pain and discomfort to patients, 
making it difficult for the endoscope to push in. To overcome 
the suffering of patients, the invention of wireless capsule 
endoscopy (CE) [1] becomes a breakthrough. The CE moves 
through the internal GI tract with the aid of peristalsis and 
transmits real video of the intestine wirelessly. This new 
biotelemetry technique can provide more valuable diagnostic 
information than conventional one. 

However, the amount of data associated with capsule 
endoscopy video is so large that it may cause significant 
power consumption in RF transmitter. In applications of 
capsule endoscope, it is imperative to consider battery life 
and performance trade-offs. The huge amount of data can be 
reduced effectively by an image/video compression method 
that is necessary for saving the power dissipation and 
bandwidth of RF transmitter. 

Traditional image/video compression techniques, 
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including JPEG and MPEG, use inter/intra-frame prediction, 
DCT, run-length coding, Huffman coding and buffering 
techniques to earn a good compression ratio to significantly 
reduce the image bit rate. Some compression algorithms for 
capsule endoscope based on JPEG and MPEG have been 
reported to get higher compression ratio [2-5]. But their 
complexities of the calculation require intensive computation, 
lots of memory and consume much power from battery. 
Considering the wireless capsule endoscope, it is not 
worthwhile to waste power on calculation complexity as long 
as the compression ratio and quality are acceptable. 

Over the past few years, a new framework called as 
Compressed Sensing (CS), which is also called Compressive 
Sampling by some other authors, has been developed for 
sampling and compression. It builds upon the 
groundbreaking work by Candes et al. [6] and Donoho [7], 
who showed that by employing linear programming or other 
mathematical programming methods, a spatially sparse signal 
can be precisely recovered from only a small set of 
measurements. The CS principle provides the potential of 
dramatic reduction of sampling rates, power consumption and 
computational complexity [8][9]. Due to its great practical 
potentials, it has stirred great excitements both in academia 
and industries in the past few years. An available source list 
of related works can be found at [10]. CS is just suitable for 
low-power imaging devices (e.g., sensor networks and 
wireless capsule endoscopy) due to its much lower 
implementation cost. 

Since a large quantity of video frames fit the criterion of 
CS, we started focusing on applying CS compression 
techniques for CE video to trade-off battery life and 
performances. 

II. COMPRESSED SENSING THEORY OVERVIEW 
The Shannon/Nyquist sampling theorem specifies that to 

avoid losing information while sampling a signal, at least 
twice the signal bandwidth should be covered. However, 
according to CS, only )( NMM <<  non-adaptive linear 
measurements of a K -sparse signal of N samples contain 
sufficient information for perfect reconstruction using 
non-linear optimization methods, provided that some 

conditions are satisfied [6][7]. Formally, let 
Nℜ∈x  be a 

real-valued, finite-length, one-dimensional, discrete-time 

signal. Any signal in Nℜ  can be represented in terms of an 
orthonormal basis of N 1× vectors 1{ }N

i i=Ψ . Using 
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the N N× basis matrix 1 2: [ | | | ]N= LΨ Ψ Ψ Ψ , a 
signal x can be expressed as 

 
1

N

i i
i

θ
=

= =∑x Ψ Ψθ  (1) 

 
where iθ  is weighting coefficients. Clearly, if Ψ is full 

ranked, x andθ  are equivalent representations of the signal: 
x  in the time or space domain, and θ in the Ψ domain. The 

signal x  has a sparse representation if it is a linear 
combination of only K  basis vectors. That is, only K  
coefficients of { }, 1,2, ,i i Nθ = L  in (1) are nonzero and 

the rest N - K ones are zero. 
Suppose that we take )( NMM << linear, non-adaptive 

measurement of x  through the following linear 
transformation: 
 = = =y Φx ΦΨθ Ωθ  (2) 
 
where Φ  is an M N×  matrix, )( NMM << . x is thus 
downsampled to a M 1× vector y . Because M N< , the 
task of reconstructing x from y  seems ill-conditioned. 
However, the additional assumption of the sparsity 
of x makes it possible and practical. The signal x  may be 
exactly reconstructed under the minimum 1-norm 
reconstruction with high probability, i.e.: 
 

 1
ˆ arg min || ||
s.t.

⎧ =⎪
⎨

=⎪⎩

θ θ
y ΦΨθ

 (3) 

 
This is a convex optimization problem that can be 

conveniently reduced to a linear program. 

III. CS-BASED VIDEO COMPRESSION FOR CE 

A. Color space conversion 
CE normally uses CMOS sensor for imaging. CMOS 

sensor produces four color channels per pixel: one red (R), 
two green (G) and one blue (B) [11]. Because there is highly 
redundancy in the information contained in the three channels, 
as is shown in Fig.1, the color space conversion is the first 
step in compression.  

 

 
(a) Original image (320x320) (b) Red (R) channel 

(c) Green (G) channel (d) Blue (B) channel 
 

Fig.1 Color image decomposed in its Red, Blue and Green channels: 
the clear similarity contained in the R, G and B pictures shows huge 
redundancy present. 

 
Normally YUV color space conversion is done by the 

following popular transformation: 
 0.299 0.587 0.114

0.147 0.289 0.436
0.615 0.515 0.100

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

Y R
U G
V B

 (4) 

where Y is luma component while U and V denote blue and 
red chroma components, respectively. To make the system 
suitable for a binary treatment, a simplified solution is used to 
remove floating point calculations. The matrix above is 
reduced to: 
 0.250 0.500 0.125

0.125 0.500 0.500
0.500 0.500 0.125

⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −⎝ ⎠

 (5) 

Thus, the simplified transformation only contains 
additions or subtractions and division by 2 that can be 
implemented by simple bit shifting. 

The evident advantage of applying this color space 
conversion is illustrated by from Fig.1 to Fig.4. One can 
easily notice that red, blue and green are distributed from 
fully white to fully black, showing that one needs the total 
range of values to code them. But on the other hand, in the U 
and V channel, the values are all contained in a very narrow 
range, which results in a very narrow histogram. Due to the 
higher sparsity, CS can more easily reconstruct them. 
 

 
Fig.2. Histograms of the three channels: red (left), blue (mid) and 
green (right). 
 

(a) Original image (b) Y channel 
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(c) U channel (d) V channel 

 
Fig.3 Color image decomposed in its Y, U and V channels. 
 

   
 

Fig.4 Histogram of the delta between two neighbor pixels in Y (left), 
U (mid) and V (right) channels. 

B. Blocking size 
The CS reconstruction performance increases as the size 

grows. However, the computational complexity of this 
problem is O(n3). Thus, in practical implementation of CE 
video decompression, there exists a trade-off between 
complexity and performance. Dividing image into blocks is 
necessary, and the block size becomes an important 
parameter. Small blocking size requires less memory in 
storage and faster implementation, while large blocking size 
offers better reconstruction performance. In our practical 
implementation, the 8x8 block size is used for this 
compromise.  

C. Zigzag scan 
The sparsity of signal is a necessary condition for CS 

theory. If one block is scanned row by row, the first pixel of 
the current row will be adjoint to the last pixel of the previous 
row. It generates high frequency and consequently cutdown 
the sparsity of signal. Thus, it is important to select a proper 
scan model. In this paper, pixels of one block are scanned in 
the zigzag fashion like in the JPEG standard [12] similar to 
Fig.5. 

 
 

Fig.5 Zigzag scan fashion. 
 

Overall, the function of the video compression is shown in 
Fig. 6. It starts in the format of Bayer patterns and separately 
processes YUV channels of the raw input. It blocks and 
zigzag scans input pixels by 8x8, and then computes CS 
measurements for transmission. Finally, it reconstructs them. 

 
Fig.6 Data flow of the proposed approach. 

IV. EXPERIMENTAL RESULTS 
We designed experiments to simulate the compression and 

reconstruction process on MATLAB platform, with 10 GI 
color images of 320x320 resolutions. The measurement 
matrices used were random sequences of real number in the 
range [-1, 1] with Gaussian distribution. We used the OMP 
(Orthogonal Matching Pursuit) minimization algorithm, 
being a common algorithm, in reconstruction and performed. 
All our experiments used FFT basis. 

The sampling percent (SP) is defined as the ratio of the 
compressed data size to the raw data size (i.e. SP=M/N). The 
measure of compression quality is the peak signal-to-noise 
ratio (PSNR), given in equation (6). 

 2

10
2

, ,
1 1

25510log
( )

W H
reconstructed original
w h w h

w h

W HPSNR
x x

= =

⎛ ⎞
⎜ ⎟× ×⎜ ⎟=
⎜ ⎟−⎜ ⎟
⎝ ⎠
∑∑

(6) 

where W and H denote the width and height of image, 
respectively. In this paper, W and H are both 320. 

Another color space RGB and blocking size 4x4 are also 
tested. Average PSNRs of images reconstructed using 
8x8-blocking RGB, 4x4-blocking YUV and 8x8-blocking 
YUV are shown in Fig.7. We note that reconstruction 
performance of YUV is much better than that of RGB in all 
SPs from 20% to 100%, especially that of U and V 
channels. The 8x8-blocking significantly outperformed 
4x4-blocking for most of the times. From Fig.7(b) we can 
further observe that application of YUV instead of RGB does 
not results in higher performance of U and V channels when 
using 4x4-blocking, but does significantly higher 
performance when using 8x8-blocking. Fig.8 shows some 
reconstructed images under several SPs. 
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(a) PSNRs of  reconstruction of 8x8-blocking RGB 
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(b) PSNRs of  reconstruction of 4x4-blocking YUV 
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(c) PSNRs of  reconstruction of 8x8-blocking YUV 

Fig.7 Comparison between the reconstruction performances.  
 

 
(a) SP=20%, PSNR=22.04 (b) SP=50%, PSNR=31.02

 
(c) SP=80%, PSNR=34.80 

 
(d) SP=100%, PSNR=156.59 

Fig.8 Reconstructed Y channels with various SPs. 

V. CONCLUSIONS AND FUTURE WORKS 
In this paper, we have presented a novel CS-based 

approach of video compression for wireless capsule 
endoscopy application. Thanks to CS theory, from the 
viewpoint of the compression simplicity, it is doubtless that 
our approach compares favorably with existing more 
sophisticated compression algorithms including JPEG and 
MPEG. Our approach is very helpful for the CE processor to 
obtain less memory and low power. However, the 
reconstructed image will be severely distorted when sampling 
percent is fewer than 20%. Hence, further development is 
necessary for improving reconstruction performance.  

As this paper is exploratory, there exist many intriguing 
questions that future works should consider. First, the theory 
of block-CS requires to be developed. Secondly, the 
optimization reconstruction criteria needs to be investigated. 
Thirdly, it is interesting to exploit the characteristic of 
gastrointestinal video, for example, the joint sparsity model in 
simultaneously recovering the R-G-B channels from the 
compressed measurements. 
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