
  

  

Abstract—The application of CCD camera improves the 
quality of fluorescence molecular tomography (FMT). However, 
large size of data set offered by CCD might increase the 
computational burden in the reconstruction. To balance the 
data size and reconstruction quality, singular value 
decomposition (SVD)-based analysis is applied. Simulation is 
performed with mouse atlas. By observing the relative gain of 
number of effective SVD components and reconstruction results, 
we find that the minimum field of view can be obtained for each 
projection in order to realize the optimization of experimental 
setup and furthest utilize data set. 

I. INTRODUCTION 
luorescence molecular tomography (FMT) is applied to 
probing the distribution of fluorescence reporters 

associated with cellular functions and offering 
three-dimensional quantitative visualization of those 
reporters in vivo in small animals [1]-[3]. It is the critical 
stage in 2007 during the development of FMT imaging 
system when the implementation of free-space fluorescence 
tomography in the 360°geometry with CCD-camera-based 
detection was proposed, making it possible to yield a superior 
information content data set [2].  

Along with the superior information content available in 
the measurements brought by the 360°CCD camera based 
FMT system, an important issue that should be considered is 
how to deal with the vast amount of data. When considering 
the size of the CCD measurement (512×512) and the number 
of projections (5-100), there will be typically 106-108 
measurements. In the linear scheme of diffusion equation, 
solving the matrix equation in such order of magnitude 
requires very high memory and computational ability of the 
computers. And the question is, do we really need all these 
measurements for the reconstruction? To answer this 
question, numerical analysis is required to optimize the 
experimental parameters, fully utilize the information of 
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measurements, avoid information abundant, and achieve the 
practical computation scheme in the reconstruction.  

Similar research has been done before. Culver et al. [4] 
firstly employed singular-value analysis (SVA) to 
analytically estimate the optimal experimental parameter in 
2001. Graves et al. [5] also applied this tool into optimizing 
source/detector arrangements and field of view in parallel 
plate geometries. And Lasser et al. [6] in 2007 used SVA to 
optimize experimental parameters in 360°FMT, including 
the projection number, illumination style, spatial sampling 
and the field of view. Herein we focus on the optimal field of 
view for detector and the projection number in the mouse 
atlas. To our knowledge, it is the first time that such 
optimization is applied into the mouse atlas. And different 
from previous study, the analysis is based on the finite 
element method (FEM) instead of analytical formula based on 
born approximation. Besides, both the Fourier coefficients 
and singular values are considered in our analysis. Since the 
nature of reconstruction is ill-posed matrix inversion, such 
analysis is necessary also from the perspective of 
reconstruction. 

  

II. METHODOLOGY  

A. Forward problem discription 
In a continuous wave (CW) FMT experiment, the model of 

photon propagation can be simplified as the diffusion theory 
[7]. 

The coupled diffusion equations are given by  
[ ( ) ( )] ( ) ( ) ( )x x ax x s slD r r r r r rµ δ∇ ⋅ ∇Φ − Φ = −Θ −               (1) 

[ ( ) ( )] ( ) ( ) ( ) ( ) ( )m m am m x afD r r r r r r rµ η µ∇ ⋅ ∇Φ − Φ = −Φ         (2) 

where r is the position vector, ( )x rΦ and ( )m rΦ represent 

the excitation and emission photon intensity (photons/ 2cm /s) 
at position r  respectively, ,ax mµ  is the total absorption 

coefficient at the respective wavelengths, and  ,x mD is the 

optical diffusion coefficient equivalent to 
1/3( ,ax mµ + '

,sx mµ ),where '
,sx mµ  is the reduced scattering 

coefficient ( 1cm− ). ( )rη  is the fluorophore’s quantum 

efficiency and afµ  is the absorption coefficient due to 
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fluorophores ( 1cm− ), which is directly proportional to the 
fluorophore concentration. slr ( 1, 2,...l L= ) represents the 
different excitation point source positions with respect to the 
subject with the amplitude sΘ .The coupled diffusion 
equations are supplemented by the Robin-type boundary 
conditions on the boundary [8], [9].  

FEM is used to assemble the stiffness matrices of (1) and 
(2).  Combining the matrix transformation [10] and free-space 
light propagation [11], the reconstruction problem of FMT is 

converted into the matrix equation of Wx b=  where 

elements of b is the values on the corresponding boundary 
finite element nodes mapped from the measurements on the 
CCD, W is the weight matrix, and the elements of vector 
x correspond to the fluorophore values on each nodes. 

B. Singular value decomposition-based analysis  
Considering the singular-value decomposition (SVD) [12] 

of
m nW R ×∈ , it can be written in the form: 

1

n
T

i i i
i

W u vσ
=

= ∑
 

where 1( ,..., ) m n
nU u u R ×= ∈  and 1( ,..., ) n n

nV v v R ×= ∈  are 
matrices with orthonormal columns. And the solution of the 
matrix equation comes to  

     
1

Tn
i

i
i i

u bx v
σ=

= ∑                                              (3) 

If b  consists of the noise e with Gaussian distribution, i.e., 

exactb b e= +  ,and matrix W also consists the noise part E , 

satisfying 
exactW W E= + ,where the elements of 

vector e and matrix E are both normally distributed with 

zero mean, and standard deviations of them are 1δ , 2δ  

respectively. Then the expected value of 
T
iu e

is 1δ , and the 

expected value of 2
E

is approximately 2 mδ [13]. As a 
consequence, we cannot resolve the component of 

exactx (
exact

exact exactW x b= ) from the noise when 

1
T
iu b δ≤

 or 2iσ δ≤ . So the corresponding coefficient in 
(3) should be omitted in the reconstruction process. 

Specifically, when 10 -T
iu b δ ε< <

and 2iσ δ ε− > , the 

measurement errors dominate and the thi component of 
equation (3) turns to 1 /i iv δ σ ; when 

1
T
iu b δ ε− > and 20 iσ δ ε< − < , the matrix errors 

dominate and the thi component of (3) 

becomes 2( / )T
i iu b vδ . Here ε is the small value with its 

order approximate to 1δ  and 2δ . Those components that are 
not eliminated as the noise are defined as effective SVD 
components.  
 

III. SIMULATIONS  
Simulations are carried out in Matlab 7.4 on a personal 

computer with 1.5GHz Pentium 4 processor and 1 GB RAM. 
COMSOL Multiphysics 3.3 is applied to obtain the FEM 
stiffness matrix for the further matrix computing.  

A. Experimental setup 
The experimental system of free-space 360 ° FMT 

projections is shown in Fig. 1(a). Our investigation is 
implemented in the same abdomen part of 3-D mouse atlas as 
Song et al.’s work [14].Optical parameters were assigned as 

aµ 0.12　 1mm− and '
sµ 1.2　 1mm− inside the kidneys (the 

red part in Fig. 1(c)), and aµ 0.23　 1mm− and '
sµ 1.0 　

1mm− outside the kidneys. The excitation light is modeled as 
an isotropic point source that locates one mean free path of 
photon transport beneath the surface. The rotational axis of 
the mouse is defined as the z axis that passes the center point 
in Fig. 1 (b). p illumination positions in the simulation are 
corresponding to  p projections with the CCD capture at 
360 / p degrees. Fig. 1(b) is the sketch figure that shows 15 
illumination positions for projections in the view of transect. 
The field of view (FOV) for the detection with respect to one 
particular excitation source is also shown in the figure. Dual 
fluorophore targets are embedded in the mouse (Fig. 1 (d)), 
and the targets are set to point sources. The geometry of the 
mouse abdomen part is discretized into 1294 nodes and 5127 
tetrahedral elements with FEM. In this study, 6, 8, 10, 15, 
projections are investigated respectively with the same finite 
element mesh discretization. Here we neglect the error in the 
mapping from CCD measurements to the corresponding 
surface measurements and assume that the system error that 
impacts the surface mesh values is normally distributed. Thus 
10% Gaussian noises are added to the surface measurements, 

i.e. , 1 2 2
/ 0.1 /e m b mδ = = ., and let 1 2δ δ= . 

B. Results 
Fig. 2 shows number of the effective SVD components 

(NESC) as a function of the FOV with different projections. It 
can be observed that there is a significant increase of NESC 
when the FOV increases from 30°to 60°. However, further 
increase of FOV, especially when it is larger than 90°,does 
not yield a corresponding relative gain in NESC. When the 
FOV increases from 180°to 210°, the NESC decreases. As 
the number of projection increases, such trend of NESC is 
more evident. Yet it is observed that the gain is strong when 
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the number of projections increases. Due to the irregular 
boundary shape of the mouse, it requires as many projections 
as possible to offer complete information for the 
reconstruction. Simulations with more projections are not 

implemented due to the limitation of computational capacity. 
However, it can be inferred that increasing the projections 
would yield a corresponding gain in NESC. 

As a complementary study to the SVD analysis, 

Fig. 1. Experimental setup and the geometrical model of a mouse abdomen part. (a) the sketch of free-space FMT experimental setup, which is similar to [2], (b) 
the sketch that shows 15 illumination positions for projections in the view of transect, (c) the mouse geometry model used for reconstruction, (d) another view 
of the mouse geometry model with dual fluorescence targets (point sources) within the body. 
 
reconstructions using (3) with effective SVD components are 
also performed. Results indicate that the targets can be 
positioned well with the FOV that yields largest NESC. 
However, when the number of projection is small, it fails to 
resolve the two targets (Fig .3 (a)-(d)). And with 15 
projections there is no significant difference of reconstruction 
results between the FOV of 90° and 180°. Besides, the 
error reconstructed fluorescence yields of two targets is 
getting smaller when the number of projections increases (the 
true fluorescence yields are set to 1), but does not change a lot 
when FOV increased under the given number of projections. 
Therefore, it can be regarded that 15 projections with FOV of 
90 ° is the optimal experimental setup among all the 
parameters we investigate based on the computational ability. 

 

IV. DISCUSSION 
In this study, SVD-based analysis is used in FMT, trying to 

reduce the computational burden in reconstruction. Different 
from the reconstruction in the phantom with the simple and 
symmetrical geometry, reconstruction in the small animal 
experiment is much more complicated due to the complex 
boundaries, which requires more nodes and elements in FEM  
 

 
mesh generations. The method we adopt in this study is 
helpful in the experiment to optimize the scale of 
measurement. 

For the (m.n) matrixW , the maximum number of effective 
component is min(m,n). According to the mesh discretization 
in our simulation, this value is 1294. However, due to the 
ill-posedness of matrix, not all the SVD components are 
required for the reconstruction. In this study, a possible 
strategy is proposed to determine how to treat the SVD 
components in FMT reconstruction problem. Results suggest 
that the data size cannot be reduced by decrease the number 
of projections, but by the decrease of FOV. Since several 
regularization-based reconstruction algorithms are aimed to 
handle those components that might be noise [15], it is more 
computationally practical to apply those iteration-based 
algorithms into reconstruction after the realization of 
optimization by SVD-based analysis in order to improve the 
computational efficiency. 

Future work might include the optimal illumination 
positions in the small animal experiment in order to increase 
the number of effective SVD components. And of more 
importance, the method is planned to apply into real 
experiment.  
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Fig. 3. Reconstruction results in the view of 2D transects. (a) 6
projections with FOV of 180°,(b)8 projections with FOV of 150
°,(c)10 projections with FOV of 120°,(d) 10 projections with FOV
of 150°,(e) 15 projections with FOV of 90°,(f) 15 projections with
FOV of 180°.The colorbar represents the reconstructed fluorescence
yields

Fig. 2. The effective SVD components as a function of the FOV with
different projections.  
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