
 
 

 

  

Abstract— Hypoglycemia or low blood glucose is a common 
and serious side effect of insulin therapy in patients with 
diabetes. Hypoglycemia is unpleasant and can result in 
unconsciousness, seizures and even death. HypoMon is a real-
time non-invasive monitor that measures relevant physiological 
parameters continuously to provide detection of hypoglycemic 
episodes in Type 1 diabetes mellitus patients (T1DM). Based on 
heart rate and corrected QT interval of the ECG signal, we 
have continued to develop effective algorithms for early 
detection of nocturnal hypoglycemia.  From a clinical study of 
24 children with T1DM, associated with natural occurrence of  
hypoglycemic episodes at night, their heart rates increased 
(1.021±0.264 vs. 1.068±0.314, P<0.053) and their corrected QT 
intervals increased significantly (1.030±0.079 vs. 1.052±0.078, 
P<0.002). It is interesting to note that QT interval and heart 
rate are less correlated when the patients experienced 
hypoglycemic episodes through natural occurrence compared 
to when clamp studies were performed. The overall data were 
organized into a training set (12 patients) and a test set 
(another 12 patients) randomly selected. Using the optimal 
Bayesian neural network which was derived from the training 
set with the highest log evidence, the estimated blood glucose 
profiles produced a significant correlation (P<0.02) against 
measured values in the test set. 

I. INTRODUCTION 
HE Diabetes Control and Complications Trial (DCCT) 
Research Group in 1993 [1] has highlighted the 

significant benefits of intensive treatment that improves 
glycemic control and reduces substantially the long-term 
complications of diabetes. Results of the DCCT showed that 
intensive insulin therapy for a mean of six years 
(maintaining glycemic levels to a target HbA1c level of 7%) 
as opposed to conventional therapy (with resultant mean 
HbA1c level of 9%) significantly lowered the risk for 
retinopathy by 47%, nephropathy by 54%, and neuropathy 
by 60% [1-2].   
 On the other hand, episodes of hypoglycemia, especially 
at night, were common among people treated for T1DM, 
largely because usual insulin preparations do not adequately 
mimic the normal patterns of endogenous insulin secretion 
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[2]. In the DDCT, patients assigned to intensive therapy 
experienced a threefold-increase incidence of severe 
hypoglycemic episodes over those receiving conventional 
therapy [1,3]. In that report, severe hypoglycemic episodes 
are defined as those in which the patient required assistance 
to treat the event and had documented blood glucose levels 
< 2.8 mmol/l (50 mg/dl). Thus, hypoglycemia proved to be a 
limiting factor in achieving improved diabetes control. 

In T1DM patients undergoing intensive insulin therapy, 
falling plasma glucose concentrations often do not elicit 
counter-regulatory responses at normal glycemic thresholds, 
allowing glucose levels to drop to dangerously low values. 
Symptoms of hypoglycemia arise from the activation of the 
autonomous central nervous system (autonomic symptoms) 
and from reduced cerebral glucose consumption 
(neuroglycopenic symptoms), some of the latter being 
potentially life threatening. Nocturnal hypoglycemia is 
particularly dangerous because sleep reduces and may 
obscure autonomic counter-regulatory responses, so that an 
initially mild episode may become severe. The risk of severe 
hypoglycemia is high at night, with at least 50% of all severe 
episodes occurring during that time [4-5]. Even with modest 
insulin elevations, deficient glucose counter-regulation may 
also lead to severe hypoglycemia. 

During hypoglycemia, the most profound physiological 
changes are caused by activation of the sympathetic nervous 
system. Among the strongest responses are sweating and 
increased cardiac output [6-8].  Sweating is mediated 
through sympathetic cholinergic fibres, while the change in 
cardiac output is due to an increase in heart rate and increase 
in stroke volume [8]. Tattersall and Gill [9] raised the 
possibility of hypoglycemia-induced arrhythmias, and 
experimental hypoglycemia has been shown to prolong QT 
intervals and dispersion in both non-diabetic subjects and in 
those with T1DM and T2DM [10]. 

In the past few years, we developed Bayesian neural 
network algorithms for the detection of hypoglycemic 
episodes in T1DM children using physiological parameters 
such as heart rate, corrected QT interval and skin 
impedance. Using the data from 25 children with T1DM for 
the 4-hour glucose clamp study, we found that 
hypoglycemic episodes in T1DM children can be detected 
non-invasively and continuously under glucose clamp 
conditions [11-13]. Recently, we have developed an optimal 
Bayesian neural network algorithm for the detection of 
natural occurrence of hypoglycemic episodes in 16 children 
with T1DM and confirmed that it is possible to detect 
hypoglycemic episodes under natural occurrence conditions 
[14].   
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In this paper, we explore further the relevance of the 
detection of natural occurrence hypoglycemic episodes at 
night by observing relevant physiological parameters in 
more children with T1DM. We aim to observe the essential 
difference between the detection of hypoglycemic episodes 
under clamp and natural occurrence conditions. In addition, 
apart from the continued development of Bayesian neural 
network algorithms for early detection of hypoglycemic 
episodes, we are also interested in the estimation of blood 
glucose profiles arisen from these algorithms.  

 Section II provides an overview of the method used for 
non-invasive and continuous detection of hypoglycemia. 
Section III presents the development and results of an 
optimal Bayesian neural network algorithm used for the 
early detection of nocturnal hypoglycemic episodes in 
T1DM children. Section IV provides a conclusion for this 
study.  

II. METHODS 

A. Non-Invasive Hypoglycemia Monitor 
There is a limited number of non-invasive blood glucose 

monitoring systems currently available but each has specific 
drawbacks in terms of functioning, cost, reliability and 
obtrusiveness. Recently, GlucoWatch G2 Biographer from 
Cygnus Inc was designed to measure glucose levels up to 3 
times per hour for 12 hours. The AutoSensor (the disposable 
component) which was attached to the back of the 
GlucoWatch monitor and adhered to the skin will provide 12 
hours of measurement. The product used reverse 
iontophoresis to extract and measure glucose levels non-
invasively using interstitial fluid. It had to be calibrated 
before each measurement period and required a two-hour 
warm-up period. It required costly disposable components, 
the gel pads must be replaced after each use, sweating might 
cause skipped readings, and the measurement had a time 
delay of about 10-15 minutes. As a result of these limitations 
this device is no longer available. 
 Intensive research has been devoted to the development 
of hypoglycemia alarms, exploiting principles that range 
from detecting changes in skin conductance (due to 
sweating) to measurements, by glucose sensors, of 
subcutaneous tissue glucose concentrations [15]. However, 
none of these have proved sufficiently reliable or 
unobtrusive. 
 Although real-time continuous glucose monitoring 
systems (CGMS) are now available to give real-time 
estimations of glucose levels, these lack the sensitivity to be 
used as alarms. For the MiniMed Medtronic (Northridge, 
CA) CGMS, the median error was reported as 10%–15% at 
a plasma glucose of 4–10 mmol/l [16-18] and the low 
efficacy of CGMS (79.1% sensitivity) in detecting 
unrecognised hypoglycemia has been confirmed [19]. For 
the Abbott Freestyle Navigator CGMS, the sensor accuracy 
was lowest during hypoglycemia (3.9 mmol/l), with the 
median absolute relative difference (ARD) reported as 

26.4% [20]. As these are median values, the errors may be 
significantly greater and, as a result, the manufacturers do 
not recommend their use as an alarm.  

 We have developed a continuous non-invasive 
hypoglycemia monitor which uses physiological responses 
[11-14]. HypoMon® (Hypoglycemia Monitor) from 
AIMedics Pty Ltd is a non-invasive monitor that measures 
physiological parameters continuously to provide detection 
of hypoglycemic episodes in T1DM patients. Associated 
with this device, the US patent 7,450,986 was granted  in 
November 2008. The system consists of a battery-powered 
chest belt that houses a set of bio-sensor electrodes for 
monitoring physiological parameters and a wireless hand-
held receiver computer. An alarm system is available for 
warning various stages of hypoglycemia. 

B. Bayesian Neural Network 
 Bayesian neural networks were firstly introduced by 
MacKay as a practical and powerful means to improve the 
generalization of neural networks [21-24]. Bayesian learning 
of multi-layer perceptron neural networks is performed by 
considering Gaussian probability distributions of the weights 
which can give the best generalization [21-22]. In particular, 
the weights w  in network X  are adjusted to their most 
probable values given the training data D . Specifically, the 
posterior distribution of the weights can be computed using 
Bayes’ rule as follows: 

( ) ( ) ( )
( )XDp

XwpXwDpXDwp
|

|,|,| =     (1) 

where ( )XwDp ,|  is the likelihood function, which contains 
information about the weights from observations and the 
prior distribution ( )Xwp |  contains information about the 
weights from background knowledge. The 
denominator, ( )XDp | , is known as the evidence for 
network X . 
 Regularization can be used to prevent any weights 
becoming excessively large, which can lead to poor 
generalization. For a multi-layer perceptron neural network 
classifier with G  groups of weights and biases, a weight 
decay penalty term proportional to the sum of squares of the 
weights and biases is added to the data error function DE  to 
obtain the cost function: 
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where S  is called the cost function, gξ  is a non-negative 

scalar, sometimes knows as a hyperparameter, ensuring the 
distribution of weights and biases in group g  and gw  is the 

vector of weights and biases in group g . 
In network training, the hyperparameters are initialized to 

be arbitrary small values. The cost function is then 
minimized using an advanced optimization technique. When 
the cost function has reached a local minimum, the 
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hyperparameter gξ  ( Gg ,...,1= ) must be re-estimated. The 

number of ‘well-determined’ weights gγ  in group g  is 

calculated based on the old value of gξ  as follows [24] 

( )gggg IAtrW 1−−= ξγ , 
gW

g
g E2

γ
ξ =   ),...,1( Gg =  (3) 

The hyperparameters need to be re-estimated several 
times until the cost function value ceases to change 
significantly between consecutive re-estimation periods. 
After the network training is completed, the values of 
parameters gγ  and gξ  are then used to compute the log 

evidence of network iX  having M  hidden nodes as follows 
[23-24] : 
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where gW  is the number of weights and biases in group g , 

and Ω  is set to be 310 . The best network will be selected 
with the highest log evidence. 

C. Study 
Twenty-four (24) children with T1DM volunteered for the 

10-hour overnight hypoglycemia study at the Princess 
Margaret Hospital for Children in Perth, Australia. Each 
patient was monitored overnight for the natural occurrence 
of nocturnal hypoglycemia. Data were collected with 
approval from Women’s and Children’s Health Service, 
Department of Health, Government of Western Australia, 
and with informed consent. In this group of children, severe 
hypoglycemia occurred at a rate of 20 episodes per 100 
patient years. All experienced occasional mild 
hypoglycemia, as is usual during the course of treatment in 
adolescents with type 1 diabetes.  
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Fig. 1.  Actual blood glucose level profiles in 24 T1DM children 

III. RESULTS 
HypoMon was used to measure the required physiological 

parameters, while the actual blood glucose (BG) levels were 
collected as reference using Yellow Spring Instruments. The 
four skin-surface bio-sensor electrodes are multiplexed to 
measure both skin impedance and ECG signals in real-time. 
The skin impedance circuit uses a variable frequency 
constant-current sinusoidal signal to generate a voltage 
which represents the skin impedance of the patient. The 
QRS detection intervals are applied to obtain average real-
time heart rate values and the data acquisition sequence 
allows the calculation of corrected QT intervals.  

The responses from 24 T1DM children exhibit significant 
changes during the hypoglycemia phase against the non-
hypoglycemia phase. The actual blood glucose profiles are 
shown in Fig. 1. Normalization was used to reduce patient-
to-patient variability and to enable group comparison by 
dividing the patient’s heart rate, corrected QT interval and 
skin impedance by corresponding values at time zero.  

The study shows that associated with hypoglycemic 
episodes (natural occurrence) in 24 T1DM children, using 
normalized values, their heart rates increase (1.021±0.264 
vs. 1.068±0.314, P<0.053) and their corrected QT intervals 
increase significantly (1.030±0.079 vs. 1.052±0.078, 
P<0.002). In this clinical study of hypoglycemic detection, 
the reduction of skin impedance was again not strong.  

It should be noted that in our previous 4-hour glucose 
clamp study which involved 25 patients [12], associated 
with hypoglycemic episodes (clamp conditions), stronger 
correlations for both heart rate and corrected QT interval 
were achieved (heart rate: 1.035±0.108 vs. 1.152±0.157, 
P<0.0001; QTc: 1.020±0.062 vs. 1.088±0.086, P<0.0001). 
This is understandable, as blood glucose profiles in T1DM 
patients are more predictable under clamp conditions. 

The detection of hypoglycemic episodes (BG<=60 
mg/dl) using these variables is based on an optimal 
Bayesian neural network algorithm developed from the 
obtained clinical data. This neural network has a multilayer 
feed-forward neural network structure with one hidden 
node layer and one output node layer. In effect, it estimates 
the presence of hypoglycemia at sampling period k based 
on the basis of the data at sampling period k and the 
previous data at sampling period k-1. In general, the 
sampling period is 5 minutes and approximately 30 data 
points are used for each patient. 

The overall data set consisted of a training set and a test 
set, each with 12 patients randomly selected. For these, the 
whole data set which included both hypoglycemia data part 
and non-hypoglycemia data part were used. For optimal 
robustness of the evaluation, we applied the evidence 
framework for Bayesian inference to the training set and 
found the feed forward neural network architecture with 5 
hidden nodes yielded the highest evidence as shown in Fig. 
2. The final feed-forward multi-layer neural network had 
heart rate, corrected QT interval as inputs, 5 hidden nodes 
and 1 output node (estimated blood glucose level).  
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Fig. 2.  Evidence framework for Bayesian inference 

 
From the optimal neural network which was derived 

from the training set with the highest log evidence, 
estimated blood glucose profiles were produced for the test 
set. These estimated blood glucose values were found to be 
correlated significantly (P<0.02) to the actual blood glucose 
values obtained for the test set.  

IV. CONCLUSION 
The above results indicate that natural occurrence 

hypoglycemic episodes at night in T1DM children can be 
detected non-invasively and continuously from real-time 
physiological responses measured by HypoMon. It is noted 
that the relevant physiological parameters such as QTc 
interval and heart rate are less correlated to the actual blood 
glucose levels when the patients experienced hypoglycemic 
episodes through natural occurrence compared to when 
clamp studies were performed. Nevertheless, these 
parameters are still significant to be used effectively for 
early detection of nocturnal hypoglycemia episodes. 

 We are continuing to develop advanced algorithms to 
improve the overall accuracy of this real-time 
hypoglycemia monitor. In the future, relevant algorithms 
will have a real-time adaptation capability at specific times 
which would allow the monitor to predict hypoglycemic 
episodes in certain T1DM patients more accurately. 
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