
An Efficient and High Performance Linear Recursive Variable
Expansion Implementation of the Smith-Waterman Algorithm

Laiq Hasan Zaid Al-Ars
Computer Engineering Lab, Delft University of Technology,

Mekelweg 4, 2628 CD, Delft, The Netherlands
Phone:+31-(0)15-27-86172 E-mail: L.HASAN@EWI.TUDELFT.NL

Abstract— In this paper, we present an efficient and high
performance linear recursive variable expansion (RVE) imple-
mentation of the Smith-Waterman (S-W) algorithm and compare
it with a traditional linear systolic array implementation.
The results demonstrate that the linear RVE implementation
performs up to 2.33 times better than the traditional linear
systolic array implementation, at the cost of utilizing 2 times
more resources.

Index Terms— Bioinformatics, Sequence Alignment, Smith-
Waterman Algorithm, FPGAs, Systolic Arrays, Recursive Vari-
able Expansion

I. INTRODUCTION

Based on dynamic programming (DP) [1], the S-W algo-
rithm [2] is a method that finds an optimal local sequence
alignment (i.e., identifying common regions in sequences
that share local similarity characteristics) between two DNA
or protein sequences (the target sequence and the search
sequence). When calculating the local alignment, a matrix
Hi,j is used to keep track of the degree of similarity between
the two sequences to be aligned (Ai and Bj). Each element
of the matrix Hi,j is calculated according to the following
equation:

Hi,j = max

⎧⎪⎪⎨
⎪⎪⎩

0
Hi−1,j−1 + Si,j

Hi−1,j − d
Hi,j−1 − d

(1)

where Si,j is the similarity score of comparing sequence
Ai to sequence Bj and d is the gap penalty. However, the
S-W algorithm is not commonly used to search sequence
databases, because it becomes too slow, when executed
against many long sequences. Instead, faster heuristic al-
gorithms like FASTA [3] and BLAST [4] are used, even
though they achieve high speed at the cost of reduced
accuracy. Therefore, to achieve both increased speed and
an optimal alignment, it is necessary to develop an ap-
proach to reduce the processing time of the S-W algorithm.
Various approaches have been adopted to accelerate the S-
W algorithm in hardware [5], [6], [7], [8], [9], [10]. An
overview of such approaches is given in [11]. In [12] an
approach based on Recursive Variable Expansion (RVE) is
presented, where RVE is a kind of loop transformation that
removes all data dependencies from a program, so that the
program is parallelized to its maximum. The RVE approach

is discussed in detail in [13], where the authors conclude
that the RVE approach is 1.6 times faster than the traditional
acceleration approach, however the conclusion is based on a
theoretical discussion and is not validated by implementation
results. In [14] an implementation based on systolic array
architecture is presented, where systolic array is an arrange-
ment of processors in an array (that may be either linear
or rectangular), where data flows synchronously across the
array between neighbors. In [15], a hardware implementation
of the S-W algorithm using RVE approach is presented and
its performance is compared with an equivalent rectangular
systolic array implementation. The results demonstrate that
applying the recursive variable expansion technique speeds
up the performance by a factor of 1.36 to 1.41, as compared
to traditional acceleration approaches at the cost of using
1.25 to 1.28 times more hardware resources. But the main
problem with this RVE implementation is that the hardware
is under utilized most of the time.

In this paper, we present an efficient and high performance
linear implementation of the S-W algorithm based on the
RVE approach and compare it with a linear implementation
based on the systolic array approach. The linear implemen-
tations make sure that the hardware is always utilized at
full and the efficiency is thus maximum. Also, the results
demonstrate that the linear implementation based on the RVE
approach is up to 2.33 times faster than the linear imple-
mentation based on the traditional systolic array approach,
at the cost of utilizing 2 times more resources. The remainder
of the paper is organized as follows: Section II presents an
implementation based on the linear systolic array approach.
Section III presents an implementation based on the linear
RVE approach. Section IV discusses and compares the results
obtained from the two implementations. Section V gives a
brief conclusion.

II. LINEAR SYSTOLIC ARRAY IMPLEMENTATION

Linear systolic array is a linear arrangement of processors
(hereafter called cells), connected in series, where data flows
synchronously across the array between neighbors, as shown
in Figure 1. The cells are used repeatedly during each clock
cycle and the computed values are stored in registers for
further manipulations.

Figure 2 shows the block diagram representation of a
basic cell design, for computing the elements of the Hi,j

3845

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE

Hi,j Hi+1,j+1 Hi+2,j+2 Hi+3,j+3

Fig. 1. An example of a four-element linear systolic array

Comparator

Comparator

ComparatorComparator

Hi-1,j-1

Hi-1,j

Sequence#1

Sequence#2_in

Si,j

0

-d

Hi,j

If Sequence#1 = Sequence#2, then Si,j = match

score, otherwise Si,j = mismatch score
d = gap penalty

Comp1

Comp2

Comp3 Comp4

Add1

Add2

Add3

Buffer

Buffer

Buffer

M
A

X

M
A

X

Max_in

Max_out

RST CLK

Sequence#2_out

Buffer

Buf1

Buf2

Buf3

Buf4

Max1
Max2

Fig. 2. Cell design for the linear systolic array implementation of the S-W
algorithm

matrix of Equation 1, according to the linear systolic array
implementation approach. In the cell design of Figure 2,
Comp1 compares the corresponding characters of the two
input sequences and generates a similarity score. If the
corresponding characters are similar, the similarity score is
equal to a specific match score, otherwise it is equal to a
mismatch score. The diagonal input from element (Hi−1,j−1)
is delayed by Buf1 for one clock cycle, as it comes from
the previous element in the array. Add1 adds the similarity
score with the delayed diagonal element. Comp2 compares
the output of Add1 with a 0. Add2 adds the left element
(Hi−1,j) with the gap penalty. Add3 adds the up element
(which is the current value of the cell) with the gap penalty.
Comp3 compares the outputs of Add2 and Add3. Comp4
compares the outputs of Comp2 and Comp3. Buf2 keeps the
output of the cell and also feeds it back to Add3 and Max1,
where Max1 compares the current value of the cell with
the external Max input. Max2 compares the output of Max1
with the previous max value. The output of Max2 is stored
back in Buf3. Buf4 delays the Sequence2 input by one clock
cycle for the next element of the array. The cell design of
Figure 2 is used as a building block for the implementation
of the four-element linear systolic array, shown in Figure 3,
where in addition to the four basic blocks, a De-Mux and
a Mux blocks are also used. The De-Mux block is used to
provide the corresponding characters of the search sequence
(referred to as Seq1) to all cells. The De-Mux runs at a
frequency, which is 4 times higher than the frequency of the
cell itself. Thus the De-Mux is able to input all characters in
one clock cycle, while minimizing the Input Output Buffers
(IOBs) utilization by a factor of 4. In the same way, a Mux
unit, running at a 4 times higher frequency than the operating
frequency of the cell is used at the output as well, which
reduces the IOBs utilization for the outputs by a factor of 4.
For scaling up the design to a larger size, the total number of
IOBs is calculated according to Equation 2, where the four-

Hi-1,j-1

Seq2_in
Max_in_ext

Hi-1,j

S
eq

1a

S
eq

1b

S
eq

1c

S
eq

1d

Seq2_out

Max_out_ext

RST CLK
d

Hi,j Hi+1,j+1 Hi+2,j+2 Hi+3,j+3

d d d
RST CLK RST CLK RST CLK

De-MuxSeq1

Mux Hout

Fig. 3. A four-element linear systolic array implementation of the S-W
algorithm

element linear systolic array is considered as one Processing
Element (PE).

Total number of IOBs =
IOBs utilized by one PE +
(Number of PEs − 1) ∗
IOBs utilized by Hout

(2)

The four elements linear systolic array, shown in Figure
3 is implemented in VHDL and the post place and route
simulation results show that for a clock period of 100 ns,
the latency of the linear systolic array is 700 ns, whereas the
slices utilized are 127 out of 13696. The platform used for
implementation is Xilinx Virtex II Pro.

III. LINEAR RVE IMPLEMENTATION

This section presents an implementation of the S-W algo-
rithm based on the linear RVE design. Figure 4 shows the

RVE Linear

Hi-2,j-2

Gap_Penalty(d)
Hi,j-2

Hi-2,j

Hi-1,j-2

Hi-2,j-1

Seq2b_in(Si)

Seq2a_in(Si-1)

Seq1b(Tj)

Seq1a(Tj-1)

Hi,j(O1)

Hi,j-1(O2)

Hi-1,j(O3)

Hi-1,j-1(O4)

CLK RST

Max_in

Max_out

Seq2a_out

Seq2b_out

Fig. 4. Block diagram representation of the linear RVE design

block diagram representation of the linear RVE design that

3846

implements a 2x2 array (hereafter called the RVE block).
The advantage of this approach is that all four elements
in the 2x2 array are computed in parallel, without waiting
for the previous elements to be computed. Thus the data
dependencies are minimized, as compared to the linear sys-
tolic array implementation. In [13], a detailed discussion and
mathematical derivations for computing the four elements of
Hi,j matrix are given. The RVE block depends on the search
and target sequences, the gap penalty, Max input, CLK and
RST, in addition to the three external elements i.e. Hi−2,j−2,
Hi,j−2 and Hi−1,j−2, and two feedback elements Hi−2,j

and Hi−2,j−1. Similarly, in addition to the four elements
of the Hi,j matrix i.e. Hi,j , Hi,j−1, Hi−1,j and Hi−1,j−1,
the RVE block also outputs Max output, Seq2a and Seq2b,
which become inputs for the next block, when the array is
extended. Using this linear RVE design as a building block,
we implemented a two-block linear RVE array as shown
in Figure 5, where the blocks are connected in a linear
systolic fashion. In addition to the two linear RVE blocks,
a De-Mux block and two Mux blocks are also used in the
extended design of Figure 5. The De-Mux block inputs the
corresponding characters of Seq1 to both RVE blocks, in the
same way as in the case of linear systolic array design. The
Mux blocks are used to output the calculated values of the
Hi,j matrix, such that the IOBs utilization is minimized. Both
the De-Mux and Mux blocks are running at a frequency, that
is 4 times higher than the frequency of the RVE design.

Seq2a_in

Seq2b_in

Hi-2,j-2

Hi,j-2

Hi-1,j-2

S
eq

1a

S
eq

1b

S
eq

1c

S
eq

1d

dd
RST RSTCLK CLK

Max_in_ext Max_out_ext

Hi,j

Hi-1,j

Hi,j-1

Hi-1,j-1

Hi+2,j+2Hi+2,j+1

Hi+1,j+2Hi+1,j+1 Seq2a_out

Seq2b_out

De-MuxSeq1

Mux

Hx

Mux

Hy

Fig. 5. Two-block linear RVE design

For scaling up the design to a larger size, the total number
of IOBs are calculated according to Equation 3, where the
two-block linear RVE array is considered as one PE.

Total number of IOBs =
IOBs utilized by one PE +
(Number of PEs − 1) ∗
IOBs utilized by (Hx + Hy)

(3)

The two-block linear RVE design shown in Figure 5,
which is equivalent to the four-element linear systolic array
design, is implemented in VHDL and the post place and route
simulation results show that for a clock period of 100 ns, the
latency of the array is 300 ns, whereas the slices consumed
are 254 out of 13696. The platform used for implementation
is Xilinx Virtex II Pro. Table I presents the filled matrix
obtained, using both the linear systolic array and linear RVE
implementations. The same inputs are used in both the cases
and the same correct results verify the correctness of both
designs. The bold digits in Table I, indicate the trace back
path.

TABLE I

FILLED MATRIX OBTAINED USING THE LINEAR SYSTOLIC ARRAY AND

LINEAR RVE IMPLEMENTATIONS

A G T A
0 0 0 0 0

G 0 0 2 2 2
G 0 0 2 2 2
T 0 0 2 4 4
C 0 0 2 4 4

IV. EXPERIMENTAL RESULTS

Table II summarizes the results presented in Section II
and Section III. It demonstrates that the four-element linear
systolic array implementation consumes 700 ns with a 10
MHz clock frequency and utilizes 127 out of 13696 slices,
when implemented on a Xilinx Virtex II Pro FPGA, whereas
the IOBs utilization is 27 out of 556. Thus a maximum of
107 PEs can be implemented on the same device, thereby
consuming most of the available slices on the FPGA. The
speedup and cost is 1, because the reference for comparison
is the same linear systolic array design, which is tradi-
tionally used for accelerating the S-W algorithm. The two-
block linear RVE implementation consumes 300 ns with
a 10 MHz clock frequency and utilizes 254 out of 13696
slices, when implemented on a Xilix Virtex II Pro FPGA,
whereas the IOBs utilization is 55 out of 556. Thus a
maximum of 53 PEs can be implemented, using the same
device. Thus in comparison with a traditional four-element
linear systolic array implementation, the two-block linear
RVE implementation improves the performance by a factor
of 700/300 = 2.33, at the cost of utilizing 254/127 = 2
times more resources. The table further demonstrates that
when both designs are extended to fifty PEs each (where a
linear systolic PE contains four elements and a linear RVE
PE contains two linear RVE blocks), then the linear RVE
implementation achieves 39900/19900 = 2.01 times higher
performance than the linear systolic array implementation at
the cost of utilizing 12700/6350 = 2 times more resources.
The IOBs utilization for the fifty-PE implementations are
calculated according to Equations 2 and 3, such that the IOBs
utilized by the fifty-PE linear systolic array implementation
= 27 + (50 - 1)x4 = 223 and the IOBs utilized by the fifty-
PE linear RVE implementation = 55 + (50 - 1)x(4 + 4) =
447. A full scale linear systolic array implementation fits

3847

TABLE II

COMPARISON BETWEEN LINEAR SYSTOLIC ARRAY AND LINEAR RVE IMPLEMENTATIONS

Implementation Time consumed Clock frequency Speedup w.r.t. Number of slices Number Hardware
linear systolic of IOBs utilization cost

array implementation

Four-element 700 ns 10 MHz 1 127 out of 13696 27 1
linear systolic array out of 556

Two-block 300 ns 10 MHz 2.33 254 out of 13696 55 2
linear RVE out of 556

Fifty-PE 39900 ns 10 MHz 1 6350 out of 13696 223 1
linear systolic array out of 556

Fifty-PE 19900 ns 10 MHz 2.01 12700 out of 13696 447 2
linear RVE out of 556

a maximum of 107 PEs, whereas a full scale linear RVE
implementation fits a maximum of 53 PEs, where the device
utilized for implementation is Xilinx Virtex II Pro FPGA.
Thus due to higher resource utilization by the linear RVE
design, the full scale implementations are not comparable.
The IOBs for the full scale implementations can be calculated
according to Equations 2 and 3, such that the IOBs utilized
by a full scale linear systolic array implementation and
a full scale linear RVE implementation are 451 and 471,
respectively. From Table II, it can be concluded that the linear
RVE implementation is preferred in case high performance
is desired and hardware cost is not a big concern. The chart
in Figure 6 shows a graphical comparison between various
linear systolic array and linear RVE implementations, where
the factors considered for comparison are time consumed in
nanoseconds and the number of slices utilized.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 PE
linear
systolic

1 PE
linear
RVE

50 PE
linear
systolic

50 PE
linear
RVE

Full scale
linear
systolic

Full scale
linear
RVE

Time consumed (ns)

Slices utilized

Speedup

Cost

0.01

0.1

1

10

100

1000

1 PE linear
systolic

1 PE linear
RVE

50 PE linear
systolic

50 PE linear
RVE

H
un

dr
ed

s

Time consumed (ns)

Slices utilized

Fig. 6. Comparison between various linear systolic array and linear RVE
implementations on a logarithmic scale

V. CONCLUSIONS

In this paper, we presented an efficient and high perfor-
mance implementation of the S-W algorithm based on the
linear RVE approach and compared it with a traditional
linear systolic array implementation. The linear RVE im-
plementation is efficient in terms of hardware utilization
(both slices and IOBs) and high performance in terms of
time consumption (latency). The results demonstrate that the
linear RVE implementation is upto 2.33 times faster than a

traditional linear systolic array implementation at the cost of
utilizing 2 times more resources.

REFERENCES

[1] R. Giegerich, “A systematic approach to dynamic programming in
bioinformatics”, Bioinformatics, vol. 16, pp: 665–677, 2000.

[2] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences”, Journal of Molecular Biology, vol. 147, pp: 195–197,
1981.

[3] W. R. Pearson and D. J. Lipman, “Rapid and Sensitive Protein
Simlarity Searches”, Science, vol. 227, pp: 1435–1441, 1985.

[4] S. F. Altschul, Gish, W. Miller, W. Myers and D. J. Lipman, “A Basic
Local Alignment Search Tool”, Journal of Molecular Biology, vol.
215, pp: 403–410, 1990.

[5] J. Chiang, M. Studniberg, J. Shaw, S. Seto and K. Truong, “Hardware
Accelerator for Genomic Sequence Alignment”, Proceedings of the
28th IEEE EMBS Annual International Conference, Aug 30–Sept 3,
2006, New York City, USA.

[6] Y. Yamaguchi, Y. Miyajima, T. Maruyama, and A. Konagaya, “High
Speed Homology Search Using Run-Time Reconfiguration”, FPL
2002.

[7] M. Borah, R. S. Bajwa, S. Hannenhalli and M. J. Irwin, “A SIMD
Solution to the Sequence Comparison Problem on the MGAP”,
Proceedings of the International Conference on Application Specific
Array Processors, 1994.

[8] A. Di Blas et. al., “The UCSC Kestrel Parallel Processor”, IEEE
Transactions on Parallel and Distributed Systems, vol. 16(1), pp: 80–
92, 2005.

[9] A. Schroder et. al., “Bio-Sequence Database Scanning on a GPU”
HICOMB, 2006.

[10] L. Hasan and Z. Al-Ars, “Performance Improvement of the Smith-
Waterman Algorithm”, Annual Workshop on Circuits, Systems and Sig-
nal Processing (ProRISC 2007), November 29–30, 2007, Veldhoven,
The Netherlands.

[11] L. Hasan, Z. Al-Ars and S. Vassiliadis, “Hardware Acceleration
of Sequence Alignment Algorithms - An Overview”, Proceedings
of International Conference on Design & Technology of Integrated
Systems in Nanoscale Era (DTIS’07), pp: 96–101, September 2–5,
2007, Rabat, Morocco.

[12] Z. Nawaz, O. S. Dragomir, T. Marconi, E. M. Panainte, K. Bertels and
S. Vassiliadis, “Recursive Variable Expansion: A Loop Transformation
for Reconfigurable Systems”, proceedings of International Conference
on Field-Programmable Technology 2007, Kokurakita, Kitakyushu,
JAPAN, December 2007.

[13] Z. Nawaz, M. Shabbir, Z. Al-Ars, K.L.M. Bertels, “Acceleration of
Smith-Waterman Using Recursive Variable Expansion”, proceedings
of 11th Euromicro Conference on Digital System Design 2008, Parma,
Italy, September 2008.

[14] L. Hasan, Y.M. Khawaja, A. Bais, “A Systolic Array Architecture
for The Smith-Waterman Algorithm With High Performance Cell
Design”, Proceedings of IADIS European Conference on Data Mining,
Amsterdam, The Netherlands, July 2008.

[15] L. Hasan, Z. Al-Ars, Z. Nawaz, K.L.M. Bertels, “Hardware Imple-
mentation of the Smith-Waterman Algorithm Using Recursive Vari-
able Expansion”, Proceedings of 3rd Inernational Design and Test
Workshop IDT08, Monastir, Tunisia, December 2008.

3848

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

