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Abstract— Neuroimaging genomics is a new transdisciplinary
research field, which aims to examine genetic effects on brain
via integrated analyses of high throughput neuroimaging and
genomic data. We report our recent work on (1) developing
an imaging genomic browsing system that allows for whole
genome and entire brain analyses based on visual exploration
and (2) applying the system to the imaging genomic analysis
of an existing MCI/AD cohort. Voxel-based morphometry is
used to define imaging phenotypes. ANCOVA is employed to
evaluate the effect of the interaction of genotypes and diagnosis
in relation to imaging phenotypes while controlling for relevant
covariates. Encouraging experimental results suggest that the
proposed system has substantial potential for enabling discovery
of imaging genomic associations through visual evaluation and
for localizing candidate imaging regions and genomic regions
for refined statistical modeling.

Index Terms— Imaging genomics, voxel-based morphometry,
genome-wide association study, visual exploration

I. INTRODUCTION

Neuroimaging genomics [1], [2] has recently emerged

as a transdisciplinary research field where new strategies

are examined to evaluate genetic effects on brain structure

and function through joint analysis of imaging and genomic

data. Although genome-wide association studies have been

actively performed [3], it remains a highly challenging issue

to effectively relate high throughput genotyping data to large

scale image data. As pointed out by Glahn et. al. [1], in

prior imaging genomics studies, researchers often reduce the

image data to a small number of variables (e.g., nine imaging

measures used in [2]) or focus on a single SNP or gene

(e.g., [4]), to limit the number of statistical tests, control

Type I error, and make computation feasible. However,

significant reduction in one or both data types greatly limits

our capability of identifying important relationships. We

report our recent work on developing an imaging genomic

browsing system that allows for whole genome and entire

brain analyses via visual exploration. An initial prototype

of this system was reported in [5], where one-way analysis

of variance (ANOVA) was used to measure the associations

between brain imaging phenotypes and genotypes and was

tested on a synthetic data set. In this paper, we extend this
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system and apply it to a real data set focusing on amnestic

mild cognitive impairment (MCI) and early Alzheimer’s

disease (AD) [6]. Besides ANOVA, in this work, we extend

this system to include analysis of covariance (ANCOVA)

so that we can not only examine the associations between

imaging phenotypes and genotypes, but also study the main

effects of genotypes and diagnosis and their interaction

effects in relation to imaging phenotypes while controlling

for covariates such as age and gender.

II. METHODS

This imaging genomic analysis was performed on an

existing MCI/AD cohort [6]. Structural magnetic resonance

imaging (MRI) data and genotype data were available for

the cohort and subsequent imaging genomic analysis with

these two types of data was performed using an imaging

genomic browsing system [5]. Further information about the

data and the analysis using the imaging genomic browsing

system with advanced features is explained in Section II and

Section III.

A. Data preprocessing

Participants of this study were selected from an existing

MCI/AD cohort [6], including all the subjects in the cohort

who have both imaging and genomic data available. These

participants included 39 healthy older adults (HC), 36 eu-

thymic older adults with cognitive complaints (CC), 34 older

adults with amnestic MCI, and 6 adults with AD. Table I

shows several participant characteristics. Structural MRI data

were acquired on a 1.5 Tesla General Electric (GE) LX Hori-

zon scanner using a T1-weighted Spoiled Gradient Recalled

(SPGR) coronal series with 1.5 mm slice thickness. Voxel-

based morphometry (VBM) [7] was employed for extracting

gray matter (GM) maps of all participants and the SPM5

software package [8] was used for this purpose. Initial GM

maps were extracted by segmenting the T1-weighted SPGR

volumes after resampling them to 1 mm3 isotropic voxels. A

12-parameter model was used to spatially normalize the GM

maps to the GM prior probability template. The normalized

GM maps were smoothed using an isotropic spatial filter with

full width half maximum of 10mm to help increase signal-

to-noise ratio and account for individual differences in gyral

anatomy. The smoothed normalized GM maps were used as

imaging phenotypes in the subsequent analyses, where each

voxel location corresponded to an imaging variable.

Genotype data was acquired from a custom Affymetrix

single nucleotide polymorphism (SNP) panel that included

3300 common SNPs in 1100 candidate genes selected from
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TABLE I

PARTICIPANT CHARACTERISTICS

Age Sex
(mean±std) (M,F)

HC 71±5.1 years 12, 27
CC 73±5.6 years 13, 23

MCI 73±6.7 years 19, 15
AD 71±9.2 years 4, 2

ALL 72±6.0 years 48, 67

Fig. 1. Graphical user interface of the imaging genomic browser, displaying
a resultant statistical map on top of an anatomical underlay.

candidate molecular pathways for age-related memory de-

cline [9]. These candidate genes/pathways were selected

based on (1) a detailed search using Medline/PubMed and

multiple databases of known or suspected genetic associ-

ations with neurological, psychiatric, neurodevelopmental

and neurodegenerative disorders of central nervous system

and (2) a detailed on-line and manual search for known

or hypothesized genes involved in cognition and memory

in humans and animal models. SNP values were coded as

follows: 0 for AA, 1 for Aa, 2 for aa, and 5 for missing

data. Before the imaging genomic analyses, a quality check

for genotype data was performed using PLINK [3] and the

results were briefly described below: Total genotyping rate

was 0.99102. No individual was removed for low genotyping

(missing rate per individual MIND > 0.05). 46 SNPs failed

missingness test (missing rate per marker GENO > 0.1), 41

SNPs failed frequency test (minor allele frequency MAF <

0.01), and they were excluded from the analysis. All the

SNPs passed Hardy-Weinberg Test (p ≤ 10
−6) and none was

excluded for this reason. This procedure also identified one

pair of participants among 115 subjects as a sibling pair. One

sibling was randomly selected and included in the analysis

and the other was excluded. Thus the total number of subjects

involved in the study became 114.

B. Data analysis

Genome-wide association studies are very computationally

intensive tasks partially due to a large number of genomic

variables involved. In an imaging genomic analysis,

the number of imaging variables is very large as well.

Therefore, the computational bottleneck becomes the

major challenge that such a study faces. To expedite the

procedure of this imaging genomic study, the following

two features were incorporated into our imaging genomic

system: selection of regions of interest (ROIs), selection

of candidate genes, highlighted with red rectangles in

Fig. 1. To reduce the amount of computation, instead

of conducting the whole brain analysis, in this study,

hippocampus, amygdala, and the entire temporal lobe in

both hemispheres were chosen as ROIs because these

ROIs included brain structures most affected by MCI/AD.

In addition to reducing the number of imaging variables,

instead of scanning 3300 SNPs, we selected a subset of SNPs

known to be related to AD. These SNPs were determined

based on a search on the Alzheimer Research Forum

(http://www.alzforum.org/res/com/gen/alzgene/default.asp)

[10]. From this search, 16 genes were found (see Table II)

in common to our 1100 candidate genes and 137 SNPs

were selected.

TABLE II

SYMBOLS AND OFFICIAL FULL NAMES OF 16 SELECTED GENES.

Gene Symbol Official Full Name

ACE
angiotensin I converting enzyme

(peptidyl-dipeptidase A) 1
APOE apolipoprotein E
APP amyloid beta (A4) precursor protein

BDNF brain-derived neurotrophic factor

CHRNB2
cholinergic receptor, nicotinic,

beta 2 (neuronal)
CST3 cystatin C
IL1B interleukin 1 beta

MAPT microtubule-associated protein tau

MTHFR
5,10-methylenetetrahydrofolate

reductase (NADPH)

NEDD9
neural precursor cell expressed,

developmentally down-regulated 9
PRNP prion protein (p27-30)
PSEN1 presenilin 1
PSEN2 presenilin 2

SORL1
sortilin-related receptor, L(DLR class)

A repeats-containing
TF transferrin

TFAM transcription factor A, mitochondrial

This imaging genomic analysis was designed to find inter-

action effects of diagnosis and SNP on imaging phenotypes.

The imaging phenotypes (GM maps) could be affected by

other factors, such as age, gender, and intracranial volume

(ICV, calculated from the FreeSurfer imaging analysis suite

[11]). To remove the effect of additional factors, multi-factor

ANCOVA was intended to be performed. Partially due to

functional limitations of Matlab (2007b, The MathWorks,

Natick, MA), multi-factor ANOVA with continuous and

categorical factors was performed for each selected imaging

variable instead of multi-factor ANCOVA in this study.

III. RESULTS

A. Performance of imaging genomic system

Fig. 1 shows the graphical user interface of our imag-

ing genomic browsing system, which was used to conduct

imaging genomic analyses via visual exploration. The current

version of the program can perform multi-factor ANOVA
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with multiple categorical and continuous factors to look for

main and interaction effects of factors on imaging pheno-

types. In addition, it has functions to reduce search ranges in

imaging and genomic domains and for users to interactively

change viewing conditions such as view direction, threshold,

and colormap. This system is based on Matlab, so that

it can run on multiple platforms. If we run this imaging

genomic system on a single machine, its performance in

terms of computational time for calculating a statistical map

of multi-factor ANOVA between one image and one SNP is

acceptable for moderately sized data sets. With our data, it

took about 2 to 4 seconds to calculate one statistical map,

depending on the number of imaging variables within each

image slice.

B. Statistical analysis

In this analysis, we focused on examining the interaction

effect of genotypes and diagnosis on imaging phenotypes

in order to localize ROIs in the imaging domain and can-

didate SNPs in the genomic domain for refined statistical

modeling. We grouped all the subjects into three diagnostic

groups: HC, CC, and MCIAD (i.e., MCI or AD). For

each SNP, we had three genotypes: AA, Aa, and aa. Thus

the interaction of genotype by diagnosis could take nine

possible values. For simplicity, we defined these nine values

(G1-G9) as follows: G1=AA*HC, G2=Aa*HC, G3=aa*HC,

G4=AA*CC, G5=Aa*CC, G6=aa*CC, G7=AA*MCIAD,

G8=Aa*MCIAD, and G9=aa*MCIAD. Given a SNP loca-

tion, each subject could take one of the above nine values.

Note that we only had 114 subjects but needed to divide

them into nine groups for each SNP. This would result in very

small groups (e.g., those containing only one or two subjects)

in many cases. Clearly, performing statistical analysis on

these cases would not derive meaningful results. Therefore,

we added a constraint to our analysis, requiring the minimum

number of subjects among these nine groups to be be equal

to or greater than 5. Fig. 2 and Table III show all the results

that meet this requirement. In Fig. 2, colored associations are

significant at the level of p < 0.05 for visualization purpose

and in each panel, at least one voxel within the selected

ROIs was significantly correlated with one SNP among 137

SNPs at the level of p < 10
−4. At this significance level

(p < 10
−4) and minimum number of subjects (≥ 5), 4 genes

(ACE, APP, CST3, and PSEN1) among 16 candidate genes,

listed in Table II, contained SNPs that were significantly

associated with some imaging variables within the selected

ROIs (hippocampus, amygdala, and the entire temporal lobe

in both hemispheres).

APP, PSEN1, and CST3 genes are known to contribute to

the early-onset of Alzheimer’s disease (AD) [12], [13], [14]

and ACE is associated with AD [15]. The APOE gene, which

is widely established as a major genetic risk factor for the

development of AD, failed genotyping on the targeted array

and so was not included in this study.

TABLE III

NUMBER OF SUBJECTS IN EACH SNP BY DIAGNOSIS GROUP. SUBJECT

GROUPS (G1-G9) WERE DEFINED BY SNP VALUES AND DIAGNOSES.

THE NUMBER OF SUBJECTS IN EACH ROW IS 114 OR LESS, SINCE THE

GENOTYPING MISSING RATES VARY AMONG THESE SNPS. RESULTANT

MAP OF EACH REFSNP CORRESPONDS TO EACH PANEL IN FIG. 2 FROM

LEFT TO RIGHT AND TOP TO BOTTOM.

RefSNP G1 G2 G3 G4 G5 G6 G7 G8 G9

rs177415 7 23 8 6 14 15 9 18 11
rs2424577 17 16 6 17 12 6 14 19 6

rs4311 13 17 9 11 18 7 12 18 9
rs4344 8 19 12 7 18 11 11 19 9

rs165935 12 19 8 11 20 5 12 16 11
rs2242682 13 19 7 13 18 5 13 19 7

rs4295 15 18 6 17 14 5 16 18 5
rs1800764 11 16 12 10 14 12 5 19 15

IV. CONCLUSIONS

We presented our initial efforts toward developing an

imaging genomic browsing system. This system was applied

to an existing MCI/AD cohort and produced very encour-

aging results, consistent to the findings from other studies.

These results support the usefulness of the imaging genomic

browsing system as an analysis tool for refining results

from genome-wide association studies and localizing brain

regions, associated with specific genes and/or SNPs. To ex-

tend the effectiveness of the system, further refined statistical

modeling will be employed for the localized imaging ROIs

and candidate SNPs. In addition to confirming these results,

development of new computational and algorithmic methods

are under consideration to improve computational perfor-

mance. The current computational performance is acceptable

for moderately sized data but not fast enough to explore

large-scale data. Therefore, a future plan includes further

improvement of performance by developing more efficient

algorithms or employing parallel computing systems.
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