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Abstract— Average mutual information (AMI) has been used
in a number of applications in bioinformatics. In this paper
we present its use to study genetic changes in populations;
in particular populations of HIV viruses. Disease progression
of HIV-1 infection in infants can be rapid resulting in death
within the the first year, or slow, allowing the infant to survive
beyond the first year. We study the development of rapid and
slow progressing HIV population using AMI charts based on
average mutual information among amino acids in the env gene
from a population of 1142 clones derived from seven infants
with slow progressing HIV-1 infection and four infants with
rapidly progressing HIV-1 infection. The AMI charts indicate
the relative homogeneity of the rapid progressor populations
and the much greater heterogeneity of the slow progressor
population, especially in later samples. The charts also show
the distinct regions of covariation between residues without
the need for aligning the sequences. By examining the changes
in AMI between populations we can distinguish between clones
obtained from rapid progressor and slow progressor. A measure
of this change can be used to enhance prediction of disease
progression.

I. INTRODUCTION

Average mutual information (AMI) I(X ;Y ) defined as

I(X ;Y ) = ∑
X ,Y∈A

P(X ,Y ) log
(

P(X ,Y )
P(X)P(Y )

)
(1)

is a measure of information contained in the random variable
Y about the random variable X , where A is the alphabet
from which X and Y take their values. From the definition it
is clear that the average mutual information is a symmetric
measure, that is, I(Y ;X) = I(Y ;X). Developed by Shannon
[1] for the analysis of communication systems, it has been
used in a variety of applications in the biological fields. It
has been used to examine covariation of different sites in
the V3 loop of the HIV genome [2], to investigate corre-
lations between sites in protein sequences[3], [4], [5], and
to differentiate between coding and noncoding regions[6],
to investigate long range correlations [7], to develop species
signatures [8], for fragment assembly [9] to study coevolving
sites in polypeptide sequences [2], [10], for secondary struc-
ture prediction [11], [12], and to study relationships between
genes and their phenotypes [13].
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The application of AMI to DNA and protein sequences
have generally used used one of two formulations. In the
first the random variables X and Y are taken to be nucleotides
which are at some distance, or lag, k apart. The AMI thus
becomes a function of the distance between the nucleotides.
In other words

I(X ;Y ) = I(k)

This approach has been used for investigating long range
relationships in DNA sequences and to develop species
signatures or otherwise characterize DNA sequences [3], [4],
[5], [6], [8], [9]. In this approach A = {A,G,T,C} and the
probabilities needed for computing the AMI are estimated
using a wide sense stationarity assumption from a single
sequence. Hence the approach is generally employed for long
sequences.

The second approach is generally employed where the
length of the sequence is small but there are multiple
sequences available as in the case of studying the co-variance
of residues in a protein sequence. In such applications
sequences from different clones are considered to be different
realizations of a discrete valued random process. The kth and
mth residues of the proteins can be thought of as samples of
the random process at “times” k and m and can be viewed
as random variables X and Y , and

I(X ;Y ) = I(k,m)

This means a sequence of length N can be characterized by
N2 values. In the current work we have organized these N2

values in the form of an N×N matrix whose (i, j)th element
is I(i,j) as shown in Table I.

I(1,1) I(1,2) I(1,3) . . . I(1,N)
I(2,1) I(2,2) I(2,3) . . . I(2,N)
I(3,1) I(3,2) I(3,3) . . . I(3,N)

...
...

...
...

...
I(N,1) I(N,2) I(N,3) . . . I(N,N)

TABLE I
DISPLAYING THE AVERAGE MUTUAL INFORMATION

We refer to these N × N matrices as AMI charts and
display them as grayscale images with lower values in black
and higher values in white as shown in Figure 1. This
figure depicts the AMI chart for a collection of env proteins
obtained from infant 1690 (details below). The number of
clones used to generate the chart was 128.
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Fig. 1. AMI values for 1690 sequence

Larger values of I(X ;Y ) can be viewed as indicating
greater dependence between the amino acids in the positions
k and m. However, lower values of I(X ;Y ) do not necessarily
mean lower dependence. To see why this is so we write
the average mutual information in terms of entropy and
conditional entropy

I(X ;Y ) = H(X)−H(X |Y )

Here H(X) is a measure of information contained in X , or
equivalently, the amount of uncertainty about X . H(X |Y )
can be seen as the uncertainty remaining about X after Y
is known. Thus the difference is the amount of information
contained in Y about X . If Y is unrelated to X then the
uncertainty remaining about X after Y is known will be
the same as the uncertainty about X prior to Y being
known. In other words H(X) = H(X |Y ) and I(X ;Y ) is zero.
However, if there was no uncertainty about X to start with,
even if there was a heavy dependence of X on Y , I(X ;Y )
would still be zero. To take into account this possibility
studies of co-evolving residues generally use a normalized
version of the average mutual information [10]. In this work
we have avoided any normalization as it tends to obscure
developments in time which was the main focus of our study.

One of the difficulties with the use of functions of prob-
ability estimates is the lack of sufficient data for obtaining
reliable estimates of the probabilities. In our particular ap-
plication the results seem to indicate that for our purposes
the amount of data available for probability estimates was
sufficient.

II. DATA

The data used in this study were obtained from HIV-1
populations isolated from the venous blood of eleven infants

born to mothers infected with the HIV-1 Type C virus. The
infants were all breast fed. Of the eleven, four infants (1449,
2669, 2873, and 2617) died within the first year due to
HIV related complications. Seven infants (1984, 1084, 1690,
1157, 2660, 2953, and 834) remained asymptomatic four
years after birth. We will call the first group rapid progressors
to indicate the rapid progression of the disease, and the
second group slow progressors. Blood was drawn from the
infants at irregular time intervals ranging from two months
in the first year, to one year for slow progressors in their
fourth year of life. More details about these samples can be
found in [14], [15], [16].

All the data for the rapid growers was combined to
generate the AMI charts shown in Figure 2. Each chart
is labeled with the identifying number of the infant from
whom the data was collected. The AMI charts for four of
the seven slow growers is shown in Figure 3. While there
is variation between the charts, the AMI charts for the rapid
progressors are generally darker indicating low AMI values.
The reason for this was a lack of variability between the
clones indicating perhaps that the population had achieved
an optimum configuration for infecting the patient and was
therefore not changing very rapidly. The AMI charts for
the slow progressors were generally lighter indicating higher
AMI values. Furthermore there was a checkerboard pattern
which indicated that certain regions of the env protein were
changing more rapidly than other regions of the protein.

0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320

0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320

1449 2617

2669 2873

Fig. 2. AMI charts for rapid growers 1449, 2669, 2873, and 2617

III. RESULTS

If we look at the histogram of the AMI values for the
various populations of clones as shown in Figures 4 and 5
we find that there is a much wider range of values obtained
from the slow grower population than the range of values
in the rapid grower population. One of the reasons for this
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1084 1157

1690 1984

Fig. 3. AMI charts for slow growers. Sequences from the mother infant
pairs 1084, 1157, 1690, 1984 were used to generate the chart. Note the
”checkerboard” pattern. The white squares correspond to regions of higher
variability

Fig. 4. Histogram of the AMI values of the slow growers. The units for
the AMI values is nats

difference is that the there is not much change in the AMI
charts at different sampling points for the rapid grower
population as shown for one case in Figure 6. The slow
grower population on the on the other hand shows a much
greater variation between time points as can be seen in Figure
7.

In order to get a single number which would reflect the
degree of change between time points we computed the range
of differences in the AMI values between AMI charts at
different time points. Tabulating the difference in the range of
AMI values between the AMI charts obtained for the HIV-1
population from the first sample for an infant and the second

Fig. 5. Histogram of the AMI values of the fast growers. Notice the
difference in the range of the y-axis. The AMI values are computed in nats.

sample we see a definite correlation between the range of
values and whether the HIV population is a rapid or slow
grower population. As shown in Table II six of the seven
slow grower population have a range greater than 1.5 while
the differences in AMI values between the first and second
time points for three of the four rapid growers is about a
third that of the slow growers.

Fig. 6. AMI charts for clones from infant 2617 at the initial time point
and two months later.

The results in Table II seems to indicate a clear difference
between the rate of change of slow progressors and rapid
progressors. However, there are several factors that might
be influencing these results. The timepoints t0 and t1 are
different for the different sets of clones. Therefore, the
interval between t0 and t1 are also different. Therefore, we
need to look at how much of the difference between rapid and
slow progressor is because of intrinsic differences between
rapid and slow progressors, and how much is due to the
different intervals.

In the data available to us we have three cases of rapid
progressors for which there are three samples that were taken
two months apart and two cases of slow progressors for
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Fig. 7. AMI charts for clones from infant 1984 at the initial time point
and two months later.

Sequence Type Range
1690 Slow 2.34
1157 Slow 2.20
2953 Slow 2.09
1084 Slow 1.70
2660 Slow 1.61
1984 Slow 1.58
2669 Rapid 1.00
834 Slow 0.86
2617 Rapid 0.51
1449 Rapid 0.45
2873 Rapid 0.38

TABLE II
RANGE OF DIFFERENCES BETWEEN t0 AND t1 FOR DIFFERENT

POPULATIONS. NOTICE THE MUCH LARGER RANGE OF DIFFERENCES

FOR THE MOST OF THE SLOW PROGRESSOR POPULATIONS WHEN

COMPARED WITH THE RAPID PROGRESSOR POPULATION.

which we have samples taken two months apart. The results
are shown in Table III

In this case the rapid growers and slow growers can be
clearly differentiated.

IV. CONCLUSIONS AND FUTURE WORK

The AMI charts described in this work provide a useful
tool for monitoring the behavior of populations. By looking
at the AMI charts at different time points we can monitor
changes in the genetic makeup of populations of clones.
This in turn may be a useful way of monitoring disease
progression. Furthermore, the range of difference between
AMI values is seen to be an effective statistic for predicting
the disease outcome. We are currently testing the approach
with more cases. The results presented in this paper are
a promising beginning and indicate the usefulness of this
approach.

Sequence Type Range
1984 Slow 1.58
834 Slow 0.85
2617 Rapid 0.51
1449 Rapid 0.45
2873 Rapid 0.38

TABLE III
RANGE OF DIFFERENCES OF AMI FOR |t0 − t1|= 2MONTHS FOR

DIFFERENT POPULATIONS. NOTICE THE MUCH LARGER RANGE OF

DIFFERENCES FOR THE MOST OF THE SLOW PROGRESSOR POPULATIONS

WHEN COMPARED WITH THE RAPID PROGRESSOR POPULATION.
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