
  

  

Abstract—One of the major challenges in unsupervised 
clustering is the lack of consistent means for assessing the 
quality of clusters. In this paper, we evaluate several validity 
measures in fuzzy clustering and develop a new measure for a 
fuzzy c-means algorithm which uses a Pearson correlation in its 
distance metrics. The measure is designed with within-cluster 
sum of square, and makes use of fuzzy memberships. In 
comparing to the existing fuzzy partition coefficient and a fuzzy 
validity index, this new measure performs consistently across six 
microarray datasets. The newly developed measure could be 
used to assess the validity of fuzzy clusters produced by a 
correlation-based fuzzy c-means clustering algorithm. 

I. INTRODUCTION 
N clustering microarray data, a fuzzy clustering algorithm 
assigns a gene with degrees of memberships to multiple 

clusters. A fuzzy membership is a value between 0 and 1 with 
one indicating a complete association to a cluster [1]. During 
clustering, the algorithm minimizes an objective function. 
Our recent study has shown a fuzzy c-means (FCM) 
algorithm with a correlation-based objective function 
outperformed the algorithm using Euclidean distance metrics 
[2]. In microarray experiments, gene expression profiles may 
correlate positively or negatively. They should be clustered 
into one group regardless of their expression values. An FCM 
algorithm equipped with a Euclidean distance metrics may 
fail to cluster those genes. The finding is also consistent with 
another application of fuzzy clustering algorithm to yeast 
microarray data [3].  

One of the major challenges in unsupervised clustering, 
especially in fuzzy clustering, is the lack of consistent means 
for assessing the quality of clusters. Several validity indexes, 
such as Consensus Clustering [4], Figure of Merit (FOM) [5], 
Gap Statistics and Model Explorer [6], have been proposed 
for microarray studies. However, they are designed for crisp 
clustering algorithms, specifically, Hierarchical and K-means 
clustering algorithms [7]. These indexes are not appropriate 
for assessing fuzzy clusters. They also show severe 
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limitations, such as high computational demand and the lack 
of precision, in processing large dataset.  

In this paper, we develop a new measure for an FCM 
algorithm which uses Pearson correlation in its objective 
function. The rest of the paper is organized into five sections. 
We introduce the microarray data sets to be used in Section II, 
give a brief review on a correlation-based FCM algorithm in 
Section III. Then, we present several validity measures, and 
propose a new one in Section IV. We will test the validity 
measures on six microarray datasets and compare them in 
Section V. We conclude in Section VI. 

II. DATA SETS 
A summary of the microarray data sets is given in TABLE 

I. The first four data sets are obtained from [7], the Yeast II 
dataset is from [5], and the lung cancer data is from 
University of Michigan [8]. According to the published 
results, number of clusters is five, three, three and eight for 
Yeast I, leukemia, lymphoma and NCI60 datasets, 
respectively. Dataset Yeast II consists of 4,373 genes. It 
contains genomic expression data of wild-type S. cerevisiae 
responding to zinc starvation, phosphate limitation, 
DNA-damaging agents and a variety of stressful 
environmental changes [3]. This data is normalized, 
background-corrected log2 value of the red/green ratios 
measured on the DNA microarrays [9]. The lung cancer 
dataset of 7,129 genes has 86 lung tumors and 10 normal lung 
samples [8]. Quartile normalization was performed using 
dChip; gene expression values were transformed to log2 
based values(http://biosun1.harvard.edu/complab/dchip/).  

TABLE I  
MICROARRAY DATA SETS 

Data Sets # Genes # Experiments # Clusters 

Yeast I 698 72 5 
Leukemia 100 38 3 

Lymphoma 100 80 3 
CI60 200 57 8 

Yeast II 4373 93 Unknown 
Lung 7129 96 Unknown 

III. CORRELATION-BASED FCM ALGORITHM 
Given a set of N genes with their expressions as X={x1, 

x2,… xN}T, each xi=[xi1, xi2, … xip] is a p-dimensional vector 
which represents a gene i with its p experiments or conditions. 
A cluster is represented by a centroid cj=[cj1, cj2,… cjp], the 
“averaged” gene expressions for all genes in the cluster j and 
for p experiments.  
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A. The Algorithm 
In clustering genes, the correlation-based FCM algorithm 

computes the fuzzy centroids cj and memberships uij at each 
iteration t as  
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Where, C is the number of clusters. A fuzzy membership uij 
represents the membership of gene i to a cluster cj, it satisfies 
a constraint ∑ 𝑢𝑢𝑖𝑖𝑖𝑖 = 1𝐶𝐶

𝑖𝑖=1 . 
A Pearson correlation coefficient is used in distance metrics 

dij which measure the difference between two genes or 
between a gene and a cluster. In microarray experiments, 
gene expression profiles may correlate positively or 
negatively. Correlated genes should be clustered into one 
group regardless of their expression values. The distance 
metrics is defined as

ji CXijd ,
21 ρ−= , where

ji CX ,ρ is the 

Pearson correlation between a gene xi and a cluster cj. It 
would be 0 if they are highly correlated, either positively or 
negatively. 

B. Correlation vs. Euclidean Distance Metrics 
The believability of a cluster could be estimated by the 

genes sharing a known functional annotation in the cluster. 
Hypergeometric probability distribution can be used to 
compute a probability that an observed enrichment of a 
functional category comes from randomly selected genes 
[10]. 
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 Where, 
Nk, nk: Number of genes in a fuzzy cluster before and after 
membership threshold. 
Mk, mk: Number of genes in a cluster assigned to a 
functional category before and after membership threshold. 
 
In comparing the correlation-based FCM algorithm to a 

classic FCM algorithm, both algorithms were applied to 
Yeast II microarray dataset. For each cluster, we computed 
the p-value of enrichment by mk genes to a functional GO 
category. Only the clusters with p-value<0.001 are listed in 
the Table II; some clusters (Ck) have multiple functional 
enrichments. Both algorithms are randomly initialized and 
seeded with 100 clusters. The fuzziness index m is set to 1.2, 
and the threshold of fuzzy membership set to 0.15.  

The correlation-based FCM algorithm produces more 
biologically meaningful clusters. There are 25 enriched 
groups of genes in 15 clusters, and 12 unique functional 
categories being significantly enriched (p-values < 0.05) for 

the correlation-based versus 13/8/9 for Euclidean 
distance-based. Furthermore, the correlation-based is able to 
identify groups of genes with much lower p-value (< 10-4), 
again, indicating that the algorithm yields clusters with more 
biological meanings. 

 
TABLE II 

ENRICHMENTS OF FUNCTIONAL CATEGORIES FOR YEAST II 
Ck Functional Category Mk nk mk p-Value 

7 Response Abiotic 215 89 10 9.88E-05 
16 Metabolism 2238 316 138 8.41E-11 
 Cellular Physiological 2903 316 140 0.0004021 
19 Conjugation 67 70 8 7.82E-08 
 Sexual Reprod 68 70 8 8.80E-08 
 Reprod Physiological 117 70 8 5.84E-06 
 Adhesion 15 70 3 0.0002475 
23 Response Stress 263 39 14 5.88E-12 
24 Response Abiotic 215 46 8 2.08E-05 
 Response Stress 263 46 7 0.0005704 
32 Localization 723 116 27 1.77E-06 
33 Metabolism 2238 268 100 0.0001388 
37 Metabolism 2238 217 83 0.0001971 
43 Localization 723 319 45 0.0008646 
56 Metabolism 2238 62 29 0.0007002 
81 Response Abiotic 215 41 6 0.0006131 

IV. VALIDITY MEASURES FOR FUZZY CLUSTERING  
Despite being an unsupervised clustering method, fuzzy 

clustering requires a fair amount of user supervision to 
perform the clustering and to interpret the results. 
Particularly, the user is expected to choose the number of 
clusters for an FCM algorithm. Cluster validity measures are 
meant for validating a partition of the data, and they can also 
be used to help user to choose number of clusters among data. 
In this section, we first review several measures, and then 
design one for correlation-based FCM algorithm.  

A. Validity Measures 
Most of available measures are designed for crisp 

clustering and only a few of them are intended for use in 
fuzzy partition. In addition, they are all based on a Euclidean 
distance metrics. Let Dj be the compactness of a cluster Cj, 
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thus the total of Dj,
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In Equation 4, a Euclidean distance, 2

ji Cx −  is used to 

measure the overall compactness of clusters. The WCSS is 
intended for validating a hard partition. 

In fuzzy clustering, a partition coefficient F was initially 
designed by Bezdek [1], 
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The coefficient measures the amount of overlap between 
fuzzy clusters. Its disadvantages are the lack of direct 
connection to a geometric property and its monotonic 
decreasing tendency with the number of clusters C. 

To overcome these disadvantages, Xie and Beni proposed a 
measure to take compactness within clusters and separations 
between clusters into one index [11], 
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B. Validity Measure for Correlation-Based FCM 
Both WCSS and the validity index S are based on a 

Euclidean distance metrics, they need to be adapted for a 
correlation-based FCM algorithm. In its application to 
microarray data, the validity measure S has shown dramatic 
variations. Though the introduction of an ad hoc “punishing” 
function has been discussed in [11], the form of this function 
itself is still unclear at this moment. We determined it was 
unsuitable for a correlation-based algorithm. A new validity 
measure is designed by introducing fuzzy membership into 
WCSS. This new measure is 
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The term ( )2,1 ji Cxcorr− is a Pearson correlation based 
distance metrics, which is the same one used in the algorithm. 
The fWCSS(k) measures the overall compactness of fuzzy 
clusters, and the amount of overlap between fuzzy clusters 
with the inclusion of fuzzy membership. The new validity 
measure uses the same distance metrics being used in the 
correlation-based FCM algorithm. 

V. EXPERIMENTS 
The correlation-based FCM algorithm is applied to six 

microarray data sets (TABLE I). The Yeast II and the lung 
cancer data sets are used for explorative purpose. 

A. Comparison to Other Measures 
We have considered three validity measures for the 

correlation-based FCM algorithm: the partition coefficient F, 
Xie and Beni’s validity index S, and a newly developed 
fWCSS. Fuzzy clustering was performed on six microarray 
datasets: Yeast I, lymphoma, leukemia, NCI60, Yeast II and 
lung cancer. To make a fair comparison, the FCM clustering 
algorithm is randomly initialized, and the fuzziness index m is 
set to 1.2 according to [10]. 

Each chart in Fig. illustrates the changes of three validity 
measures with number of clusters. For the sake of 
comparison, a validity measure is normalized by its 
maximum. Results show the validity measure S is unsuitable 
for clustering microarray data, it varied dramatically on all 
data sets. In addition, its value increases with number of fuzzy 
clusters on Yeast II and Lung data sets, both with more than 
4000 genes. As for the partition coefficient F, it changes little 

   

  
 

 
 

Fig. Validity measures calculated on six microarray data sets. 
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on lymphoma, leukemia and NCI60 datasets, which makes it 
hard to use for our algorithm. Clearly, the fWCSS measure 
performs consistently across six datasets, and outperforms the 
other two.  

It is worthy of note that the sizes of lymphoma, leukemia 
and NCI60 datasets are relatively small, less than 300, in term 
of number of genes. As less overlapped clusters of genes are 
expected in those datasets, the partition coefficient F may not 
perform well. Like many validity measures, the newly 
developed measure tends to decrease monotonically with 
number of clusters. It is also recommended to assess the 
clusters in terms of the enrichment to a functional category 
(see TABLE II) based on a hypergeometric probability 
distribution. 

In addition to cluster validation, one may use the measure 
to determine appropriate number of clusters in a data set. To 
do it, a threshold could be set beforehand and the number of 
clusters is identified when the change of a validity measure is 
below that threshold. 

B. Lung Cancer Profiling 
The correlation-based FCM clustering algorithm is also 

applied to lung cancer microarray data for explorative 
purpose. The dataset of 7,129 genes has 86 lung tumors and 
10 normal lung samples. Before the algorithm is applied, the 
validity measure fWCSS is computed on the dataset. A close 
examination of fWCSS revealed 40 as the number of clusters 
for the data set. After fuzzy clustering, p-values are computed 
for each functional category in a cluster. 

TABLE III 
ENRICHMENT OF FUNCTIONAL CATEGORIES FOR LUNG DATA 

Ck Functional Category nk mk p-Value 

16 Immune Response  932 47 6.09E-16 

 Defense Response   932 35 5.47E-11 

 Response To External Stimulus   932 33 1.44E-08 
17 Immune Response  847 54 8.30E-23 

 Defense Response   847 32 3.33E-10 

 Response To Biotic Stimulus   847 20 1.09E-07 
18 Cell Adhesion  356 21 5.88E-10 
24 Cell Cycle  862 43 1.10E-13 

 Cell Cycle Process 862 38 2.52E-12 
31 Macromolecule Localization  1714 38 1.10E-07 

 Establishment Protein Localization   1714 34 3.33E-07 
34 Biosynthetic Process  1259 82 1.48E-22 

 
As an unsupervised clustering algorithm is often used for 

exploratory purposes, a true validation of clustering results 
requires expensive laboratory experiments [12]. An alternate 
way is to compute the p-values based on hypergeometric 
probability distribution. TABLE III listed the ones with 
p-value < 10-6. This second level of validation identifies six 
significant (p-value < 10-4) cluster centroids with one or more 
functionally enriched categories. 

VI. CONCLUSION 
Several validity measures have been evaluated for use with 

a correlation-based FCM algorithm. They include WCSS, a 
partition coefficient, and Xie and Beni’s validity index. 

Results show Xie and Beni’s validity index changes 
dramatically on six microarray data sets, and increases with 
number of fuzzy clusters on two large microarray data sets. It 
is of little use in clustering microarray data. As for the 
partition coefficient, its values barely change on small data 
sets such as lymphoma, leukemia and NCI60. It is suspected 
the poor performance of this measure is caused by the small 
number of genes in the datasets. 

A newly developed validity measure performs better than 
both existing ones in term of consistency and robustness. In 
our opinion, a purely statistical validity measure by itself is 
not sufficient to make a judgment on the validity of a fuzzy 
partition. We recommend on using it with a domain specific 
validation approach, such as the enrichment to functional 
categories based on hypergeometric probability distribution. 
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