
  

  

Abstract— The concept of deriving a gene signature in breast 
cancer has been addressed by different research groups, each 
one proposing a different solution with minor overlap among 
them. There is still an open issue of unifying results among 
different research groups. In this study we evaluate two 
published signatures, namely the 70 gene signature of 
Netherlands group and a 57 gene signature published in our 
previous study and propose an evaluation platform under 
which the underlined signatures could be compared effectively. 
After such an evaluation, we proceed with a unified signature 
and assess its performance with improved efficiency over the 
initial signatures. 

I. INTRODUCTION 

HE release of the human genome working draft [1] 
along with the development of DNA microarray 
technology has opened a new era in the battle against 

cancer. Using such a technology scientists can derive 
genomic markers (gene signatures) highly associated with 
various types of cancer. One widely discussed and accepted 
[2] [3] signature has been published by the Amsterdam 
group [4] for breast cancer. Several other signatures have 
been obtained on the basis of the same dataset, which show 
little overlap in terms of selected genes [5]. This fact has 
been previously addressed and explained on the basis of data 
exploratory issues and algorithmic limitations in view of the 
large domain of the problem and the small number of 
samples in the dataset (curse of dimensionality) [6]. In fact, 
there might be a number of gene sets that result in similar 
predictive accuracy [5]. Furthermore, testing a signature 
derived from one dataset on a different dataset reflects 
significantly decreased prognostic value.  

In this study we explore the hypothesis that different 
signatures, even with little overlap, might carry 
complementary information that can aid in improving the 
performance of gene signatures. Towards this direction, we 
use and evaluate two signatures as presented in section II. 
We further merge the two signatures and evaluate the 
prognostic power of the new set of genes. Besides accuracy 
performance evaluation, we assess a qualitative comparison 
between all signatures addressing their significance in terms 
of qualitative characteristics that deal: a) with the ability of 
the expression profile to differentiate its behavior between 
the two prognostic groups [10] b) the statistical significance 
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of the expression profile of a signature under the hypothesis 
that genes with similar expression pattern are associated 
with similar outcome and c) the survival prediction ability of 
the underlined signatures. Our aim is to perform an objective 
and fair comparison that would not necessarily result in a 
strict ranking of signatures but rather propose additional 
evaluation criteria under which genomic signatures could be 
compared in an effective, reliable and objective manner. 

II. BACKGROUND KNOWLEDGE 

In this section we provide the background information on 
the various tools that will be used to assess the comparison 
between signatures. The quality of signatures is evaluated 
through the Global test, whereas their predictive ability is 
assessed through the nearest centroid classifier. 

A. Tested Signatures 
The Amsterdam signature (denoted by S1) was derived 

using a training set of 78 patients, 44 belonging to the good 
prognosis group and 34 to the poor prognosis category 
(relapse before five years). A three step procedure was 
applied for the derivation of the final signature. Initially, 
those genes that had a two fold difference and a p-value less 
than 0.01 in more than five tumors were selected as more 
significant, while the ones not satisfying the condition were 
discarded. In turn, correlation between the prognosis 
category and the expression value of each gene across 
samples for all remaining 5000 genes was calculated using 
Pearson correlation. Among those 5000 genes 231 were 
found to be significantly regulated with the prognosis 
groups either in a positive or negative way i.e. genes that 
gave a Pearson correlation value of less than -0.3 or greater 
than 0.3. Finally, those 231 genes were ranked in order 
according to a variation of Fisher’s ratio and groups of five 
genes were repeatedly extracted from this ranked list and 
were added to the feature list for designing a classifier. The 
leave one out cross validation method was implemented and 
classification was based on the correlation of the expression 
profile of the left out sample with the mean expression 
profiles of the two prognostic groups formed by the 
remaining samples. Performance was increasing up to 70 
genes, which constitute the final gene signature (S1), giving 
an 89.47% success rate on the independent test set of 19 
samples [4]. Even though the group has received criticism 
for not cross validating their result [10], the signature was 
further evaluated on 234 new cases [7] outperforming the 
performance of the NIH and St. Gallen criteria on Breast 
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Cancer. Besides, the signature has been accepted by FDA 
[2], while the European Organization for Research and 
Treatment of Cancer has initiated randomized trials to 
further strengthen the value of the signature [8]. 

 As a second signature (S2) we consider the 57-gene set 
published in our previous study [9] that was derived using 
an external leave one out cross validation procedure using 
the same set of 78 patients for training purposes as the 
Amsterdam group. Along each of the 78 runs, we applied 
the recursive feature elimination procedure based on linear 
neuron weights (RFE-LNW) [9], [11], while genes were 
eliminated in a recursive manner, so that surviving ones 
form the closest power of two. Maximum average 
performance was measured at the 64 gene cut off point, so 
that the entire iterative process derives 78 different sets of 
64 genes as possible candidates for a final gene signature. 
Taking their union, an ensemble of 200 different genes is 
formed Reapplying RFE-LNW and eliminating one gene per 
iteration we derive a 57-gene signature (denoted by S2) with 
89.47% success rate on the independent test set of 19 
samples. Notice, that the derived result is directly 
comparable with that of Amsterdam’s group in terms of 
prediction accuracy while the latter signature consists of a 
smaller number of genes.  

We can point out some important differences related to 
the philosophies of these two signatures. The Amsterdam’s 
groups applied a drastic preprocessing step that resulted in a 
231 set of possible candidate genes, while we derived the 
candidate set of approximately same size (200 genes) 
through the use of an external evaluation process [13] with 
no preprocessing on the initial set of genes. Both methods 
used Fisher’s ratio as the gene ranking criterion. However, 
in the case of signature S1 it was applied in a static manner, 
while in S2 was applied in a dynamic approach through the 
RFE-LNW methodology [9], [11]. 

B. The Global Test 
The global test [14] elaborates on the connection between 

gene expressions and clinical outcome. If a group of genes 
can be used to predict the clinical outcome, the gene 
expression patterns must express different behaviour for 
different clinical outcomes. Defining now ijX x⎡ ⎤= ⎣ ⎦  as the 

n m×  data matrix containing the m genes of interest for n 
samples and Y as the 1n×  clinical outcome vector, we can 
model the dependence of Y  on X . The model in [15] 
defines an intercept α , a length- m  vector of regression 
coefficients β and a function h such that: 
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Testing whether there is a predictive effect of the gene 
expression on the clinical outcome is equivalent to testing 
the hypothesis:  

 0 1 2: 0mH β β β= = = =  (2) 

It can be shown that if 0H is true the test statistic Q is 
derived as: 
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where ( )1R m XX ′= , ( )1hµ α−= is the expectation of 
Y under 0H and 2µ is the second moment of Y under 0H . 
Hence, Q is a score test which can be interpreted in two 
alternative ways as follows: 
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Equation (4) indicates that genes with large variance have 
much more influence on the outcome of the test than genes 
with low variance. Additionally, equation (5) concentrates 
on samples and checks whether samples with similar 
outcomes share also similar gene expression patterns. 

C. The Nearest Centroid Classifier (NCC)  
For classification purposes we use the nearest centroid 

prediction rule [16]. Each patient is classified according to 
the distance between his/her signature and the two average 
profiles; the predicted class is the one closer to examined 
profile, by means of the Euclidean distance. Such a classifier 
can be formulated as follows: 

 ( ) ( )( )f x sign= − ⋅x c w  (6) 

where 
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+
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and +c , -c are the centroids of the positive and negative 
classes respectively.  

III. CLASS COMPARISON AND SURVIVAL PREDICTION 
ANALYSIS 

We assess the classification performance for each 
signature in the 234 cases published in [7], while the 
training of NCC was performed on the 78 patient set 
published in [4]; for a more objective evaluation we 
removed the 61 patients that were commonly included in the 
two sets and were considered in the derivation of the two 
signatures. Classification results are presented in Table 1 
where we notice an advantage of S1 signature by three units 
on the AUC measure. Furthermore, we assess the statistical 
significance of the two signatures with respect to gene 
expression value and the prognosis outcome; We use the Q-
Test (section II.B) to test whether genes in the two 
signatures with similar expression patterns also point to 
same clinical outcome. This result is directly associated to 
the quality characteristic (b) that was stressed out earlier in 
the introduction and is depicted in Fig. 1 (left part). We 
notice that signature S1 achieves a higher score on the Q-
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Test than S2, and hence it shows better correlation between 
gene expression and clinical outcome. Signature S2, even 
though it achieves a smaller test value, it still achieves a 
high score, demonstrating also significant correlation 
between gene expression and clinical outcome.  

TABLE 1: ACCURACY PERFORMANCE OF THE TWO SIGNATURES ON 234 NEW 
CASES. 

Signature AUC SEN SPE 
S1 0.69 0.76 0.62 
S2 0.66 0.74 0.59 
S1-S2 0.70 0.80 0.59 

We formulate next, a unified signature composed of the 
gene union between S1 and S2. This resulted in a new S1-S2 
signature of 122 genes (5 genes are common) achieving an 
AUC performance of 0.7, but also achieving an increased 
sensitivity (true positive) rate of 80% (Table 1). The 
specificity decrease of the unified signature is considered 
minor with respect to the gain in sensitivity. 
 

 
Fig. 1. Significance of the expression profile with respect to the prognosis 
group. 

Analyzing further the implications of the achieved 
classification measures, the 59% specificity reflects a ratio 
of 107 recognized cases out of 180 true negatives, while the 
80% sensitivity rate maps to 43 correctly categorized out of 
the 54 true positive cases (11 classified as false negatives). 
From the set of 118 cases categorized as negatives, 107 are 
indeed true negatives. In a clinical setup, the implication of 
this score is that for cases not suggesting chemotherapy the 
decision is correct with 91% (107/118) probability. 

This unified signature also reflects an improvement on 
the correlation between gene expression and clinical 
outcome, by achieving a 433.74 Q-Score, higher than its 
predecessor signatures S1 and S2 (Fig. 1, left part). We also 
demonstrate the expression profile of the unified 122-gene 
signature in Fig. 2 (part A). We took the classification result 
and performed a labeled hierarchical clustering procedure, 
where the predicted classification result was given as an 
attribute to the clustering algorithm. Intermingling of 
samples (columns) is then avoided when clustering is 
performed. As we observe in Fig. 2 (part A) we notice a 

substantial difference in the expression level between the 
green and red group of the clustering result. This finding is 
directly associated to the quality characteristic (a) that was 
pointed out in the introduction. In addition we used the 
survival times available with the data set and performed a 
Kaplan-Meier survival analysis on the classification result. 
We derived the graph depicted in Fig. 2 (part B), where we 
observe that there is a substantial gap between the two 
curves, meaning that the unified signature can effectively 
discriminate the two prognostic groups. The good prognosis 
group, green line, which is derived using the survival times 
corresponding to the green sub-tree patients of the clustering 
result (Fig. 2 (Part A)), approaches a 12-year survival with a 
probability of approximately 0.9. On the other hand, the 
poor prognosis group (red-line) approaches the same 
survival period but with a probability of less then 0.5. These 
results demonstrate that the unified gene signature can 
indeed effectively discriminate between the two prognostic 
groups, addressing the quality characteristic (c) that was 
pointed out in the introduction.  

We proceed one step further by validating the 
performance of the unified signature on yet another data set 
derived from a different microarray platform, but also a 
different experimental design [17]. None of the signatures 
can be considered as a clinical predictor on this data set, 
while their significance on the correlation between gene 
expression and clinical outcome is also significantly 
decreased (Fig. 1, right part). One possible way to overcome 
such limitations in cross-platform evaluation studies could 
be to search for biological knowledge hidden behind the 
signatures, in terms of biological processes and pathways. 
Then, instead of combining gene sets, integration should be 
attempted at the level of biological processes involved, so as 
to combine knowledge from different sources towards a 
more global and biologically meaningful solution. 

IV. CONCLUSION 
In this work we evaluated two gene signatures using various 
metrics. We used standard success-rate criteria but in 
addition we assessed the significance of the two signatures 
based on ‘quality’ measures such as expression profile 
analysis through Q-Test and class comparison through the 
labeled clustering on the classification result; both signatures 
were derived on the same data set. Even though 
Amsterdam’s signature appears to have a slight advantage in 
a direct comparison, the unification of these two signatures 
improves significantly all assessed measures, indicating that 
both signatures bear complementary information regarding 
the outcome. Moving one step further towards a cross 
platform evaluation, the performance of signatures 
considered drops significantly. One factor that may play a 
catalytic role on this reduced performance is related to 
incompatibilities encountered between the different 
microarray platforms. Different microarray platforms may 
examine different set of genes belonging to different 
biological processes or pathways. Research groups then start 
from different basis which may lead to diverse or  
.
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Fig. 2.  Class comparison and Kaplan-Meier analysis of the unified signature of 122 genes. In part A, rows correspond to genes columns to patients. 
 
complementary solutions. Another aspect is the difference in 
the experimental protocols that are used by research groups, 
while the ‘philosophy’ of the methodological procedure that 
is applied to derive a gene signature also plays its role. 
Normalization of datasets to the same reference, as well as 
biological knowledge integration, is expected to play 
catalytic role in improving cross-platform validation results. 
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