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Abstract— We study the differential equations describing the
chronic myeloid leukaemia. We propose a novel drug scheduling
method to enhance the T-cell mediated immune response. The
control strategy relies on the understanding of the immune
boosting mechanism. The feasibility of the strategy is illustrated
via simulations.

I. INTRODUCTION

In this paper we evaluate the applicability of the control

idea developed in [2], [3] to the model of chronic myeloid

leukaemia (CML) proposed in [12]. The main purpose of

the paper is to derive a new drug scheduling methodology

for CML patients on the basis of the properties of the

immune dynamics. The basic control idea stems from a

simple graphical analysis and in turn leads to the design of

a feedback control strategy.

The CML dynamic model considered in this paper has

been introduced in [9]. The cancer cell progression dynamics

and the immune dynamics are based on the CML mathemati-

cal model in [14] and the immune model in [5], respectively.

Low-order models for CML are also studied and discussed

in [6], [13]. Some theoretical results on a simplified CML

model, derived from the model in [9], have been presented

in [11], [15].

The role of the immune response in CML is justified

by clinical data. For example, in [4], experimental data

show some anti-leukaemia effect due to CD4+ and CD8+

T cells during the use of the CML drug imatinibTM. In

addition, the work in [4] suggests that anti-leukemia immune

response can be boosted in-vitro by means of the patient’s

cryopreserved blood with irradiated cancer cells even when

the anti-leukemia immune response is too weak to be de-

tected. In particular the work in [9] assumes that a similar

stimulation of the immune response can be achieved in-vivo,

and this method is denominated “cancer vaccine” in [9].

Number, dosage, and timing for the vaccine scheduling are

also studied in [9].

The paper is organised as follows. In Section II we recall

the CML dynamic model of [9]. In Section III we present the

control idea of [2], [3] and the application of the proposed

control method to the model of CML. Finally we provide

conclusions and further remarks in Section IV.
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II. THE CML MODEL

We consider the CML dynamic model of [9], which

includes the T-cell mediated immune response, namely

ẏ0 =[ry(1 − ǫ) − d0]y0 − qCp(C, T )y0, (1)

ẏ1 =ayηay0 − d1y1 − qCp(C, T )y1, (2)

ẏ2 =byηby1 − d2y2 − qCp(C, T )y2, (3)

ẏ3 =cyy2 − d3y3 − qCp(C, T )y3, (4)

ż0 =(rz − d0)z0 + ryy0ǫ − qCp(C, T )z0, (5)

ż1 =azz0 − d1z1 − qCp(C, T )z1, (6)

ż2 =bzz1 − d2z2 − qCp(C, T )z2, (7)

ż3 =czz2 − d3z3 − qCp(C, T )z3, (8)

Ṫ =sT − dT T − p(C, T )C + Q(Cnτ , Tnτ ), (9)

where

p(C, T ) = p0e
−cnCkT, C =

3
∑

i=0

yi +
3

∑

i=0

zi,

Cnτ = C(t − nτ), Tnτ = T (t − nτ),

Q(Cnτ , Tnτ ) = 2np(Cnτ , Tnτ )qT Cnτ .

The states describe the populations of specific cells in a unit

volume of blood. In particular, y0, y1, y2, and y3 describe

the concentrations of leukemia haematopoietic stem cells,

progenitors, differentiated cells, and terminally differentiated

cells without resistance mutations while z0, z1, z2, and z3

describe the respective concentrations of leukemia cells with

resistance mutations. T denotes the concentrations of anti-

leukemia T cells. Model (1)-(9) includes the anti-leukemia

T cell response, modelled by equation (9). Accordingly this

system can describe comparatively slow relapse and the

immunological data from [4] can be fitted into the model

[9]. For a detailed explanation of the system (1)-(8) see [14],

and for further details on the dynamics (9) see [5].

In order to deal with drug dosage as control input, we

modify the terms ηa and ηb of the model. A similar modifi-

cation can be found in [1], [17]. In particular, we rewrite ηa

and ηb as

ηa(t) = 1 − η∗

au(t), ηb(t) = 1 − η∗

b u(t),

where η∗

a and η∗

b are the maximum effect of the drug and

u is the control input. Note that we use the same u in ηa

and ηb because the imatinib treatment has influence over ηa

and ηb simultaneously. From a control perspective the input

u represents the drug dose, which takes values between zero
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TABLE I

PARAMETERS FOR CANCER EVOLUTION [5], [9], [10], [14], [16].

d0 0.00225 d1 0.006 d2 0.0375 d3 0.75
ry 0.008 ay 1.6 by 10 cy 100
η∗

a 0.99 η∗

b
0.9987 rz 0.023 az 1.6

bz 10 cz 100 ǫ 4 × 10−8 k 1
p0 0.8 qC 0.75 qT 0.5 τ 1

TABLE II

PARAMETERS FOR IMMUNE RESPONSE AND INITIAL CONDITIONS FOR

THE PATIENT ‘P4’ IN [4], [9].

n 2.2 dT 0.0022 sT 9 × 10−7

cn 7 y0(0) 2.4 × 10−6 y1(0) 6.4 × 10−4

y2(0) 0.1707 y3(0) 22.7556 z0(0) 0
z1(0) 0 z2(0) 0 z3(0) 0
T (0) 4.09 × 10−4

and one. If u = 1 a patient receives maximum dose, while

u = 0 means no medication. The parameters η∗

a and η∗

b

are set based on the parameters ηa and ηb during imatinib

treatment [14]. Note that we do not need to introduce control

input term for the equation (4) because the parameter cy does

not vary as a consequence of the imatinib treatment [14]. u
is restricted to be either 0 or 1 because the values of ηa and

ηb are known only when full-dosage imatinib treatment or

zero-dosage imatinib treatment are administered.

From the works [9], [14] we assume that the system para-

meters involving the evolution of the cancer cell are identical

for all CML patients. See Table I for these parameters. These

parameters are based on the works [5], [9], [10], [14], [16].

We assume that the parameters for the immune dynamics

are different for each CML patient. In [9] estimation of

the immune related parameters of three patients is carried

out exploiting the experimental data of [4]. In this paper

we consider the so-called patient ‘P4’ of [4], [9]. The

corresponding parameters are summarised in Table II. The

initial conditions considered in this paper are also listed in

the same table with the assumption z0(0) = 0 of [9].

If the inequality

C(t) < 10−10 (10)

holds then the cancer is eliminated. Note that a cancer cell

concentration level below 10−10 implies that less than one

cancer cell remains in the human body (approximately the

concentration of half a cancer cell in the patient’s blood),

so the leukemia population is totally eradicated [9]. Thus in-

equality (10) is one of the main criteria to evaluate treatment.

Fig. 1 shows the state histories of C(t) and T (t) for 750
days for simple treatment examples. In this paper we use

the DDE command ‘dde23’ of MATLAB to solve the time-

delay differential equations numerically. The top graph and

the bottom graph in Fig. 1 correspond to the cases with zero-

dosage (u(t) = 0) and full-dosage (u(t) = 1), respectively.

In the case u(t) = 0, in the top graph of Fig. 1, the

cancer C(t) grows unboundedly and the immune response

Fig. 1. State histories of C(t) and T (t) for simple treatment examples. The
top graph and the bottom graph correspond to the cases with zero-dosage
(u(t) = 0) and full-dosage (u(t) = 1), respectively. The solid lines and the
dotted lines indicate the state C(t) and T (t), respectively. Note that T (t)
is re-scaled by a factor 104 in the top graph.

T (t) stays at the initial level T (0) = 4.0909× 10−4 for 0 ≤

t ≤ 750. For the case with full-dosage intake, as seen in the

bottom graph of Fig. 1, C(t) increases again about 500 days

after the treatment starts and the immune response T (t) does

not grow enough to eliminate CML thoroughly. Although the

drug therapy of full-dosage for all t can force the cancer cell

concentration below a low level, it cannot eliminate CML.

Note that the minimum value of C(t) for 0 ≤ t ≤ 750 is

3.5171× 10−4, which does not satisfy inequality (10).

III. CONTROL METHOD AND CANCER VACCINE

We can regard model (1)-(9) as the interconnection of

two subsystems: the cancer population dynamics and the

immune system. The cancer population dynamics are eight-

dimensional nonlinear dynamics described by equations (1)-

(8). The immune system is a one-dimensional nonlinear

dynamical system described by equation (9). The goal of

the control is to enhance immunity, and this is equivalent to

boosting the state T . Note that the immune state T must be

enhanced to suppress the leukemia concentration due to the

cancer population dynamics.

Consider1 the function of C

Fi(C) = e−cnCC.

Note that Fi(C) ≤ Fi(1/cn) (= M) for all C. If m ≤ Fi(C)
and m ≤ Fi(Cnτ ), then

Ṫ ≥ sT − [dT + (M − 2nqT m)p0k]T,

which implies that T ≥ sT /[dT +(M−2nqT m)p0k] in finite

time (see [8, Lemma 3.4]). Thus, if we can select the value

of m as large as possible, then the immune response T will

be boosted. Note that Fi(C) and Fi(Cnτ ) depend upon the

variables C(t) of the cancer population dynamics, and this

1If nτ = 0, then equation (9) can be rewritten as Ṫ = sT + K(C)T ,
with K(C) = (2nqT − 1)p0ke−cnCC − dT . Note that, for the given
parameters, 2nqT − 1 > 0. A similar structure of immune dynamics is
discussed in one of the examples of [2], [3].
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Fig. 2. Graph of the function Fi(C) = e−cnCC, which is derived from
(9).

eight-dimensional subsystem is affected by the drug input u.

Accordingly we can control Ṫ indirectly via the input u.

The state T is regarded as the immune term and Fi(C)
is regarded as the immune increasing factor. With these

definitions it is possible to apply directly the control steps

proposed in [2], [3], as described below. Fig. 2 shows the

graph of Fi = Fi(C) as a function of C, for the given

parameters. In the control steps we aim at increasing the

minimum values of the immune increasing factor because

this control action helps increasing the value of m.

Control Steps

Initialization: Select a positive number Ts. Ts denotes

the sampling time for the computation of the control input.

Let T and Fi(C) = e−cnCC denote the immune term and

the immune increasing factor, respectively. XI is the initial

condition of model (1)-(9), as discussed above.

STEP 1: Integrate model (1)-(9) with initial condition

XI for Ts time instants with full medication and with no

medication. Let ΞF,fm and ΞF,nm be the values of the

immune increasing factor of the model (1)-(9), at the end

of the integration period, with full medication and with no

medication, respectively.

STEP 2: If ΞF,fm is greater than ΞF,nm, then set u = 1.

Otherwise set u = 0.

STEP 3: The input determined in STEP 2 is applied to the

model (1)-(9) with initial point XI for Ts time instants. Let

XF be the values of the state at the end of the integration

period.

STEP 4: Set XI = XF and go to STEP 1.

Fig. 3 shows the results of the application of the control

procedure with Ts = 1 (day). The control input converges

to zero and C(t) converges to zero. The state histories of

C(t), T (t) and of the controlled drug input are depicted in

the top and middle graphs, respectively. C(t) is displayed

in logarithmic scale in the bottom graph. The criterion (10)

holds for t ≥ 339 and the maximum value of T (t) for 0 ≤

t ≤ 750 is 1.0809.

Fig. 3. The results of the application of the control procedure to model
(1)-(9) with Ts = 1 (day). In the top graph the solid line and the dotted line
indicate the state histories of C(t) and T (t), respectively. The controlled
drug input and the logarithm of C(t) are displayed in the middle and bottom
graphs, respectively.

A. Discussion on Cancer Vaccine

The experimental work in [4] suggests that autologous

leukemia cell of a CML patient can be gathered, inactivated,

and transfused back in order to boost the immune response

using anti-leukemia T-cell. The work in [9] shows that this

cancer vaccination effect can enhance the T-cell immune

response to a level that would suppress the leukemia popu-

lation to zero. In [9] the vaccination problem is regarded

as an optimisation problem to deliver vaccinations, with

fixed dosage, at constant time intervals in order to achieve

the criterion (10). To study the feasibility of this approach

the dynamical equation describing the population of the

inactivated leukemia cells is added to the model (1)-(9). In

particular, the model is modified by adding

V̇ = − dV V − qCp(C, T )V + sV , (11)

and by replacing equation (9) with

Ṫ =sT − dT T − p(C, T )(C + V ) + QV (Cnτ , Tnτ , Vnτ ),
(12)

where

Vnτ = V (t − nτ), sV = sV (t),

QV (Cnτ , Tnτ , Vnτ ) = 2np(Cnτ , Tnτ )(qT Cnτ + Vnτ ).

V and T denote the concentrations of inactivated leukemia

cells and anti-leukemia T cells, respectively. The time func-

tion sV (t) is defined below. The parameters for equations

(11) and (12) and the vaccine strategy to be used for the

patient ‘P4’ in [9] are listed in Table III.

The function sV (t) in equation (11) represents the supply

rate of inactivated leukemia cells. When the vaccine is
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TABLE III

VACCINE STRATEGY FOR THE PATIENT ‘P4’ AND PARAMETERS FOR

INACTIVATED CANCER CELLS [9].

T iming 233 Pacing 10 Number 5
V (0) 0 dV 0.35 qV 0.1
tV 0.01

Fig. 4. The graph of e−cnCT for the case of drug therapy without
vaccination.

injected the vaccine dosage qV should be delivered for the

duration tV . Thus sV (t) is defined as [9]

sV (t) =

{

qv/tV , t ∈ [Ti, Ti + tV ],
0, otherwise,

where the Ti’s are the vaccination times.

In [9] it is assumed that the patient is treated by full-dosage

drug therapy (u(t) = 1) for all t when the cancer vaccine is

considered. It is also assumed that no mutations in the CML

model takes place, hence ǫ = 0.

Thus equation (12) can be rewritten as

Ṫ = DO − p0e
−cnCkTV + 2np0e

−cnCnτ kTnτVnτ ,

where DO = DO(T, Tnτ , C, Cnτ ) describes the right-hand

terms in the equation (9). Thus both V and Vnτ are multiplied

by p0ke−cnC(tm)T (tm) with tm = t and tm = t − nτ ,

respectively. Note also that 2n > 1 for the given parameter

n. This implies that the vaccine effect in the long run is

affected by the value of e−cnCT at the vaccination time.

For the case of drug therapy without vaccination, the graph

of e−cnCT is presented in Fig. 4. Note that this case is not the

same as in Fig. 1, since ǫ = 0 in the current case. From this

graph we have some insight into optimisation for vaccination

strategies. For example we infer that if the vaccine starts

after 300 day with the same pacing and number, then the

immune boosting effect is much better than that of the

vaccine strategy in Table III. In such a case the maximum

T (t) for 0 ≤ t ≤ 500 is 0.2892, which is higher than that

discussed in [9], and the criterion (10) holds for t ≥ 435(day)

(the simulation graph is not presented in this paper).

IV. CONCLUSION

We have discussed a unified control methodology for drug

scheduling for disease dynamics. We have shown its applica-

bility to CML dynamics by means of computer simulations.

The method relies on the intuitive idea that the control action

has to boost the immune system and it is based on a simple

graphical analysis of the immune system model.

Compared to the research in [9] we use only the drug

imatinib as control input without the autologous inactivated

cancer cells and our controlled system corresponds to a

closed-loop structure which is desirable in view of its

potential robustness. Note that the control strategy can be

implementable even in the case of no detectable immune

response in the patients with CML, because the strategy is

based on the immune increasing factor and it is possible to

measure the precise level of the leukemia load using PCR

tests [7], [12].
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