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Abstract— A model is presented that is an alternative ap-
proach to the bio-heat equation for use in radio frequency
heating of the liver. The model comprises both a tissue subvol-
ume and a blood subvolume. Separate bio-heat equations are
determined for each subvolume, but with an additional term
exchanging heat between them, thus creating a coupled system.
The derivation for the two coupled differential equations is
outlined and sample simulations are presented to demonstrate
the importance of considering the two subvolumes separately,
even when the blood subvolume is a small fraction of the tissue
subvolume. 1

I. INTRODUCTION

Dissection of tumours is often the chosen therapy for
hepatocellular carcinoma, but about 75% of patients cannot
be treated solely by dissecting tumours. In contrast to resec-
tion, radio frequency ablation (RFA) is a minimally invasive
treatment and can be performed percutaneously. However,
this form of therapy still has major drawbacks: the exact
extension of the necrosis zone is almost impossible to plan
or monitor and assessment of the results during or right after
the procedure is very limited.

A bottleneck on the way towards the patient specific
planning tool is our limited understanding of processes
during tissue heating and, ultimately, tissue death as the
result of that heating. The established bio-heat equation as
described by Pennes [6] does not match with experimental
data in liver tissue and there exists no validated simulation
of a real situation.

Models derived from continuum approximations have pre-
viously been proposed – see review papers [1], [2], [4] –
as well as models based on specific vessel architecture –
[7], [8]. Chen and Holmes [3] propose a model based upon
two subvolumes, but the analysis yielded a single analytic
equation.

We therefore present in this paper a more realistic physio-
logical model of the heat generation and transfer processes,
which will enable us to compare our predictions with exper-
imental data more easily.

II. THEORY

A. Derivation of heat equations

The model is based upon conservation of energy in an
arbitrary control volume. Equation (1) shows the considered
heat terms for the control volume where ρcV is the heat

1The research leading to these results has received funding from the Eu-
ropean Community’s eventh Framework Programme under grant agreement
n◦ 223877, project IMPPACT.

capacity of the control volume, Qcond and Qbulk are the
net heats leaving the control volume via thermal conduction
and via bulk blood flow respectively, whilst QRFA and Qm

are the heats generated in the control volume due to radio
frequency heating and due to metabolic processes.

ρcV
∂T

∂t
= V

(
−Qcond −Qbulk +QRFA +Qm

)
(1)

By considering the control volume as two subvolumes –
one consisting of the blood present in the control volume,
Vb, and one consisting of tissue, Vt – and by including a new
term, Qtb, to account for the heat transferred from the tissue
subvolume to the blood subvolume, (1) can be rewritten as
two coupled equations (2) and (3):

ρtct
Vt

V

∂Tt

∂t
= −Qcond

t +QRFA
t +Qm

t −Qtb (2)

ρbcb
Vb

V

∂Tb

∂t
= −Qcond

b −Qbulk
b +QRFA

b +Qm
b +Qtb (3)

Vt

V
+
Vb

V
= 1 (4)

Using the assumption that all mass within the control
volume is accounted for by one of the the two subvolumes,
(4), (2) and (3) sum together to form (1).

B. Heat Equation Components

Qcond accounts for the transfer of thermal energy between
neighbouring molecules in a particular subvolume due to the
local temperature gradient for that subvolume. For the heat
equations in the model, Fourier’s Law for heat conduction is
used:

Q = kA∇T,

where k is the thermal conductivity and A is the surface area
over which the conduction takes place. Thus, for use in (1),
the constitutive equation in differential form, is:

Qcond = −V∇ · (k∇T ) . (5)
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During radio frequency heating, the source term QRFA

is present. The magnitude of the of heating is determined
by the electric field generated by the ablation probe, and is
calculated from:

QRFA = V σ |∇ϕ|2 , (6)

where σ is the electrical conductivity and φ is the electric
potential.

As the proposed model is designed for the purpose of
calculating liver temperature in regions undergoing RFA
treatment, the source term accounting for the heat generated
during metabolic processes is negligible in comparison to
QRFA. Thus:

Qm ≈ 0. (7)

By continuing the concept of considering separate sub-
volumes and considering the well-perfused state of the
liver, mass will be continuously flowing through the blood
subvolume. The proposed model approximates the liver to
a porous medium with flow obeying Darcy’s Law such that
the volume flux ~u is given by:

~u = −κ
µ
∇p, (8)

where κ is the permeability of the medium, µ is the dynamic
viscosity of the fluid and P is the pressure. The bulk flow
heat term, Qbulk, accounts for the heating leaving the control
volume as heated blood and is calculated from:

Qbulk = ρbcb (∇Tb · ~u) . (9)

The final term, Qtb, considers the heat transferred from
the tissue subvolume to the blood subvolume via convection
and thereby links the two subvolumes and forms a coupled
pair of equations. Equation (10) equates the heat transfered
convectively as proportional to the difference between the
tissue and blood subvolumes temperatures. Due to modeling
the liver as a porous medium, the exact flow regime and
total blood vessel surface area are both unknown. Without
this knowledge, the form of forced convection cannot be
determined and therefore the heat transfer coefficient h is
unobtainable from standard results. The constant of propor-
tionality, (hA)tb, accommodates for both unknowns: the heat
transfer coefficient and the unmodeled vessel surface area.

Qtb = (hA)tb (Tt − Tb) (10)

C. Expanded Heat Equations

Substituting (5), (6), (7), (8), (9) and (10) with appropriate
subvolume subscripts into (2) and (3) gives the expanded heat
equations:

ρtct
Vt

V

∂Tt

∂t
= Vt∇·(kt∇Tt)+Vtσt |∇ϕ|2−(hA)tb (Tt − Tb)

(11)

ρbcb
Vb

V

∂Tb

∂t
= Vb∇ · (kb∇Tb) + ρbcb

(
∇Tb · −

κ

µ
∇p

)
+Vbσb |∇ϕ|2 + (hA)tb (Tt − Tb)

(12)

D. Precursor Equations

Before solving (11) and (12) p and ϕ need to be deter-
mined.

Continuity of mass applies to any arbitrary control volume
thus,

∇ · (ρb~u) = 0,

and assuming that blood is incompressible,

∇ · ~u = 0. (13)

Substituting (8) into (13) gives

∇ ·
(
−κ
µ
∇p

)
= 0,

which, by modeling the whole liver as well perfused and
assuming the blood has constant viscosity can be further
simplified to

∇2p = 0, (14)

which is easily solvable given boundary conditions.
An analogous approach to electric potential yields

∇2ϕ = 0. (15)

E. Implementation Steps

In preparation for numerical simulations, it is necessary
to set boundary conditions for solving (14). The way set out
in the proposed model is to create an array containing 1 for
any point that exists in a vessel on the arterial side of the
network, -1 for any point that exists in a vessel on the venous
side of the network, and 0 otherwise. The pressure array
can then be initialised by mapping the vessel network array
and assigning a positive pressure and a negative pressure
in the pressure array to the values 1 and -1 in the vessel
network array. The whole array is then linearly adjusted such
that the minimum pressure anywhere is 0. The difference in
pressure is determined by the user, but the authors suggest a
pressure relating to difference between mean arterial pressure
and central venous pressure. Any points on the surface of the
array are kept at their initialised pressure.

In order to generate numerical simulation results, the pro-
posed model is designed to be implemented by proceeding
through the following steps:

1) Set Vessel Network Array
2) Initialise Pressure Array
3) Solve (14) to obtain pressure array
4) Solve (15) to obtain potential difference array
5) Initialise Blood Temperature and Tissue Temperature

arrays
6) Solve (11) and (12) to obtain temperature arrays
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Fig. 1: Plot of Gaussian heat source used to replace RF heating
source term in simulations

III. SIMULATION RESULTS

The model described in the previous section can now
be used in the preceding implementation steps to produce
various temperature profiles over time in an sample of
modeled liver under RF heating.

For simplification of numerical analysis all tissue proper-
ties are assumed to be homogeneous and isotropic. Properties
are modeled as invariant with temperature, pressure and
electric potential.

For ease of displaying simulation results here, all sim-
ulations are two-dimensional, plotted on a square array of
100x100 data points. Further, to best demonstrate the effect
on temperature profile development caused by using the
coupled equation approach, the precursor equations were
simplified by setting not solving (15) but rather setting QRFA

to a Gaussian heat source centered on point (50,50) as shown
in Fig. 1.

The vessel network array used for the simulations con-
tained one artery and one vein. The artery was located
centered on point (80,80) and the vein at point (30,30),
resulting in a symmetrical simulation. Both were of equal
area – 10x10 – thereby observing continuity of mass for the
area considered. Fig. 2 shows the Vessel Network as defined
by the authors for use in simulations.

Fig. 2: Vessel Network used in simulations

Parameter and Description Value and Unit
ρt, tissue density 1060kgm−3

ρb, blood density 1060kgm−3

ct, tissue specific heat capacity 3600Jkg−1K−1

cb, blood specific heat capacity 4180Jkg−1K−1

kt, tissue termal conductivity 0.49Wm−1K−1

kb, blood termal conductivity 0.49Wm−1K−1

Vb
V

, blood volume fraction 0.02m0

(hA)tb, heat transfer coefficient 10000.49Wm−3K−1

κ, porosity 0.02m2

µ, dynamic viscosity 3.1× 10−3kgm−1s−1

TABLE I: Parameters used in the model simulations

Fig. 3 shows the resulting pressure distribution after Fig.
2 was used for the boundary conditions in solving (14).

The simulation discussed hereon runs in simulation time
from 0 - 5000 in unit time increments. For the simulation, the
heat source was active for a duration of 90 time increments
– between time steps 10 and 100. Table I presents the values
and units used in the simulations.

A selection of snapshots are shown in Fig. 4 with the
Tissue Temperature fields on the top, and Blood Temperature
fields below. The left hand pair show the fields at simulation
time 50, followed by times 200, 1000 and 5000.

IV. DISCUSSION

The tissue temperature field at time 50 clearly follows
the Gaussian heating as no bulk flow field distortion effect
has started. Evidence of distortion is visible in the Blood
Temperature field at time 200. However, due to the low
volume fraction of the blood subvolume, Vb

V , of 0.02, the
thermal mass of the blood is low and the effect on the tissue
subvolume is not obvious at time 200. Slight distortion of
the Tissue Temperature field is displayed at time 1000, but
it is clear at time 5000, where the field appears similar
to the Blood Temperature field displayed at time 1000. In
simulations run with closer matched subvolumes the thermal
lag exhibited here is lessened. The thermal lag is thus
significant, even for a very small blood volume fraction (2%).

Fig. 3: Pressure distribution calculated for simulations
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(a) Simulation time 50 (b) Simulation time 200 (c) Simulation time 1000 (d) Simulation time 5000

Fig. 4: Tissue Temperatures (top) and Blood Temperatures (below) at progressive simulation times

V. CONCLUSION

The model presented here represents only one stage in
a larger mathematical system. Further work will involve
the creation of a second model determining a quantitative
measure of cell health and tissue integrity based upon a
time-temperature history of the tissue subvolume. A third
model will then be developed to close the loop which will
link the spatially varying tissue integrity field to the physical
properties used in the model presented here.

The results presented here are only solutions derived
from numerical analyses. However, an analytical solution to
(11) and (12) in nondimensional form with one-dimensional
spatial derivatives has also been obtained. The authors are
therefore also conducting a sensitivity analysis to determine
the dominant behavioural terms and parameters. This is the
subject of a parallel paper [5].
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