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Abstract— Development of safe and effective glucose management

algorithms for remediation of inpatient hyperglycemia reduces nursing

workload and improves patient outcomes by providing decision support

at the bedside. Computer simulation of drug pharmacokinetics and

pharmacodynamics enables evaluation and testing of glycemic control

algorithms prior to in vivo investigations without risk to patients. For

subcutaneous insulin dosing, in silico testing requires an accurate model

of diffusion and availability of insulin from the time of injection. Wong

et al. [1, 2] have recently proposed a comprehensive compartmental

model of pharmacokinetics for six types of insulin to serve as the

basis for available brands. The compartmental model is efficient for

processing a large number of virtual patients. Herein we analyze

numerical integration properties for the Wong et al. model, as a guide

for achieving peak efficiency of simulations.

I. INTRODUCTION

With the emergence of bedside devices in hospital ICUs and

wards comes the opportunity to integrate decision support (DS)

utilities on computers and smart infusion pumps to assist nurses

and clinicians in providing an alternative to paper-based protocols.

One approach to DS is to transfer existing paper-based protocols–

of which there are many–to computer for automation. Another

approach is to develop new therapeutic algorithms that may be too

complex for paper calculation, but provide improved personalization

through adaptive control.

In silico, or computer-simulation-based, testing offers a safe

means to develop and compare dosing control algorithms outside

the hospital setting prior to clinical testing. Simulation requires two

components aside from the DS control strategy: a large database of

virtual patients and a pharmacokinetic/pharmacodynamic (PKPD)

model, both representing the cohort. In choosing a PKPD model,

the researcher must strike a balance between one which accurately

reflects the underlying physiology, e.g., the endocrine system, and

one which is efficient enough to conduct large in silico trials within

a reasonable time frame.

In the case of blood glucose management for Type-I, Type-II

and stress-induced diabetic patients the trend in the simulation

community, as surveyed by Nucci and Cobelli [3], has been toward

an efficient compartmental model where physiological system com-

ponents such as plasma glucose concentration and subcutaneous in-

jection volume are associated with variables in a system of ordinary

differential equations (ODE). In [1], Wong et al. have constructed

an extensive and comprehensive ten-compartment model for the

pharmacokinetics of absorption for rapid-acting, regular and long-

acting insulin after extensively searching past literature for pertinent

models and parameters. The authors then verify the model in [2].

Here we analyze the underlying dynamical structure in terms

of numerical integration for the Wong et al. ten-compartment

pharmacokinetic model representing the following six types of

insulin administered subcutaneously: monomeric, regular, neutral

protamine Hagedorn (NPH), lente, ultralente and glargine. The

absorption model serves a role in a larger PKPD system exhibiting

further dynamic behavior requiring more numerical analysis for
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optimizing efficiency, but the injection kinetics serve merely as

input and there are no inter-relationships of system components

that might alter the absorption subsystem eigen-structure. Another

element of this paper is to rate some common ODE solvers applied

to absorption simulation.

II. SUBCUTANEOUS ABSORPTION MODEL OF [1, 2]

A. Compartmental Model

The Wong et al. model has ten compartments (see Fig. 1 in [1]

for an illustration), which we arrange into vector
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where I(t) is plasma insulin concentration (mU/liter), and remain-

ing variables are mass in the xi(t) interstitium compartment (mU),

xh(t) hexameric compartment (mU), xdm(t) dimer/monomer com-

partment (mU), cNPH(t) NPH crystalline protamine compartment

(mU), clen(t) lente crystalline zinc compartment (mU), xh,ulen(t)
ultralente hexameric compartment (mU), culen(t) ultralente crys-

talline zinc compartment (mU), xh,gla(t) glargine hexameric com-

partment (mU), and pgla(t) glargine precipitate compartment (mU).

The plasma insulin concentration I(t) serves as the input to the

pharmacodynamic model of the endocrine system.

All but the last two model equations in x(t) are linear, enabling

compact notation similar to a conventional linear system of ODEs.

The authors of [1, 2] approximate the maximum rate of dissolution

for glargine amorphous micro-precipitate to hexameric form as

rdis,max(ti ≤ t <ti+1) =
(

15 , if up,gla(ti) < 30, 000

15
“

up,gla(ti)

30,000

”

, if up,gla(ti) ≥ 30, 000

(2)

where up,gla(t) is the subcutaneous injection rate for the precipitate

fraction of glargine and ti is time of injection. For convenience,

define Ω = {t : rdis,max(t) < kprec,glax10(t)}, where kprec,gla is the

decay constant for the precipitate compartment, and define 1Ω(t)
the indicator function of set Ω. Then

x
′(t) = Aix(t)

+

2

4

08×1

(rdis,max(t) − kprec,glax10(t))
− (rdis,max(t) − kprec,glax10(t))

3

5 1Ω(t) + Bu(t)
(3)

where elements of vector x(t) ∈ R
10 represent the compartments

of the model, Ai ∈ R
10 × R

10 is a coefficient matrix, u(t) ∈ R
18
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Fig. 1. Each injection is modeled as (a) a shifted unit impulse or (b)
a shifted unit pulse p(t − ti) multiplied by dosage di,k .

represents the insulin input (explained later), and B ∈ R
10 × R

18

is a coefficient matrix.

Sparse matrix Ai is upper diagonal and appears in Fig. 2. In

brief, one can think of the parameters as the decay or disassociation

constants for the compartments associated with the variables in (1).

For a detailed description of all parameters see [1]. The rate of

diffusion loss, coefficient kd, is actually a function of the injected

insulin volume Vinj. Thus Ai is technically time-varying, and we

deal with this on a piece-wise constant basis for each injection i.

B. Input Model

Wong et al. use a simplification of the hexameric/dimeric equi-

librium dynamics developed in [4, 5]. Aside from the monomeric

insulin, the remaining types of insulin, when injected, are distributed

according to the three equations

up/c(t) = α utotal(t) (5)

uh(t) + udm(t) = (1 − α) utotal(t) (6)

uh(ti)

Vinj,i

= QD

„

udm(ti)

Vinj,i

«3

(7)

where QD (ml/mU)2 is an hexameric-dimeric equilibrium constant

and Vinj,i (ml) is volume of injection i. The implicit solution of

(5)–(7) follows from choosing the real root of polynomial

QD

V 3
inj,i

u3
dm(ti) + 0 +

1

Vinj,i

udm(ti) −
(1 − α)utotal(ti)

Vinj,i

= 0. (8)

The dosage vector for an injection is formed by arranging

elements according to the six brand types (monomeric, regu-

lar, NPH, lente, ultralente and glargine) and subdividing by the

three equilibrium types (monomeric/dimeric, hexameric and crys-

talline/precipitate). Figs. 3 and 4 show the appropriate sparse input

matrix and dosage vector to achieve the model equations in [1].

We consider two methods of putting insulin injection doses into

the PKPD simulation. The first is an instantaneous appearance

of insulin modeled by a scaled and shifted Dirac delta function,

diδ(t − ti), as illustrated in Fig. 1a. This is achieved by running

simulations in piece-wise intervals and adding Bdi to the final state

of an interval to serve as the initial value of the next interval. A

second method of incorporating injections is to spread the dosage

across the smallest interval of interest, h, as illustrated in Fig. 1b,

where

p(t) =

(

1/h, 0 ≤ t < h

0, otherwise
(9)

i.e., dip(t − ti). Note that h is not necessarily the same as the

interval of numerical integration, ǫ, in the case of adaptive step-size

methods. The appendix describes the second method’s integral.

III. NUMERICAL INTEGRATION

Generally, nonlinear ODEs are numerically integrated using a

solver, and there are several ways one could approach introducing

subcutaneous insulin injections into simulation, summarized as

follows:

1) adaptive step-size w/ instantaneous or distributed injection

2) fixed step-size w/ distributed injection (AVOID)

3) fixed step-size w/ instantaneous injection.

Adaptive step-size ODE solvers implement two similar solvers of

differing order in parallel, estimating the integration error per step

and retrying with smaller step size when the error is out of tolerance.

For example, MATLAB routine ode45 is a Runge-Kutta (RK) 4th

order algorithm in combination with an RK 5th order algorithm

for estimating truncation errors. The approach has the advantage

of decreasing the integration interval around difficult areas, such as

with the discontinuities of the distributed injection model of Fig. 1b.

(See [6] for an example of decreasing step size near discontinuity.)

At the same time the adaptive approach increases the integration

interval when possible, thus achieving efficiency.

In a similar vein, using a fixed integration step size, ǫ, and

injections modeled as distributed pulses is fraught with large error

if ǫ is the same as the interval of interest, h, or with poor efficiency

if ǫ is taken as a fraction of h.

The third approach—piece-wise integration between injections

with Bdi added to the final value of interval i − 1 as the initial

value of interval i—does not suffer from inaccurate integration of

the input. We will analyze this approach as a means of illustrating

numerical properties.

An ODE of the exponential variety, such as (3) is potentially

stiff, and the eigenvalues of its Jacobian matrix provide a stiffness

index [7]. That is, provided Re(λi) < 0 for all i,

L = max |Re(λi)| (11)

and if Lh ≫ 1, where h is the length of an interval of interest, the

system is stiff on the interval in question.

Furthermore, the stability of the numerical technique in com-

bination with system dynamics must be ensured. Consider a fixed

step-size solver such as MATLAB routine ode4, an implementation

of the well-known RK 4th order algorithm.1 The stability function

for Runge-Kutta methods is

φ(z) =
det(I − zT + zevT )

det(I − zT)
(12)

where T and v come from the associated Butcher tableau and e is a

vector of ones. With each injection, one can verify the eigenvalues

of the Jacobian matrix (in the case of (3), simply Ai) and integration

step size satisfy

|φ(hλi)| < 1.0 (13)

Fig. 5 shows the profile of 10 U of insulin, for all six varieties,

injected at time zero when using the median model parameters

from Table 9 in [1]. The key for Fig. 5 lists insulin types in

order of largest to smallest peak concentration. Eigenvalues of the

corresponding Jacobian matrix Ai range from –0.0008 to –0.16;

all negative as expected. By criteria (11), stiffness problems should

arise for h ≈ 6.25 min and greater.

To test the above hypothesis, consider the results of simulations

varying h logarithmically in the range 0.2 to 20 min for monomeric

insulin. At each integration interval, Fig. 6 shows φ(λmaxh) where

the stability criteria is met up until h = 10 min. Thus we expect

1http://www.mathworks.com/support/tech-notes/1500/1510.html#fixed.
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Fig. 2. Sparse system matrix.
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Fig. 3. Sparse input matrix.

and do find divergence problems for h ≥ 10 min in error plots

in Fig. 7 and Fig. 8, where the dashed line represents 0.1%. The

error plots show |Isim(t)−Ilin(t)|/Ilin(t), where Ilin(t) is the closed-

form solution of the linear system, which is exp(Ai(t−ti))Bdi for

injection model Fig. 1a and (18) in the appendix for injection model

Fig. 1b. Simulations for h = 12.4 and 15.7 min show marginal

instability, while trial h = 20 min exhibits extreme divergence.

Figure 7 shows relative error at peak plasma insulin concen-

tration. Accuracy at the concentration peak is quite good until

approximately h = 5 min, where the monomeric insulin simulation

shows erratic behavior. Being the shortest acting insulin model,

monomeric absorption is associated with the fastest decaying mode,

i.e., the largest magnitude eigenvalue, and is the most susceptible

to stiffness and convergence problems.

Figure 8 shows the maximum relative absolute insulin concen-

tration error across the whole simulation interval, not just peak.

Errors associated with concentration values less than 2% of the

peak concentration were discarded. (The error is not of interest

when the concentration is at levels on order of the noise in the

system.) The shift of error curves to the left in Fig. 8 compared to

Figure 7 indicate that the largest error does not occur at the peak.

IV. CONCLUSIONS

Numerical analysis applied to the Wong et al. subcutaneous

insulin absorption model indicates that a fixed integration interval of

approximately five minutes or less will provide good accuracy for

simulating insulin absorption. The larger PKPD system in which the

model is used requires similar analysis. The suggested methodology

for efficient simulation is to use an adaptive ODE solver, setting

its maximum interval of integration to near the stable and non-stiff

limits suggested by analysis, e.g., in this case one to five minutes.

Table I shows accuracy for several ODE solvers applied to NPH

insulin injections. The adaptive ODE solver will allow injections to
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Fig. 4. Injection dose vector at time ti.

be modeled as an instantaneous or distributed across the minimum

interval of interest. The fixed step-size algorithm is suitable for

injections modeled as instantaneous impulse, but performs poorly

for the distributed pulse scenario. Generally, ODE solvers designed

for stiff problems perform marginally better for the subcutaneous

insulin absorption PK model.

APPENDIX

The solution to linear, constant coefficient ODE

x
′(t) = Ax(t) + Bu(t) (15)

is [8]

x(t) = eA(t−t0)
x0 +

Z t

t0

eA(t−τ)
Bu(τ) dτ (16)

where the last term is commonly known as the convolution integral

and eAt as the system impulse response. Let di be a dose vector.

Then u(t) =
P

i
dip(t − ti). For sake of simplicity, we drop the

summation and focus on a single injection at, say, time ti. Through

use of similarity transformation Ai = QiDiQ
−1
i , where Di is

a diagonal matrix of eigenvalues (or more generally, in Jordon

canonical form), (16) becomes

x(t) = eAi(t−ti)xi +

Z t

ti

eAi(t−τ)
Bdip(τ) dτ

= eAi(t−ti)xi +

„
Z t

ti

eAi(t−τ)p(τ) dτ

«

Bdi
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TABLE I

ACCURACY OF NPH PHARMACOKINETIC SIMULATION WITH FIXED INTEGRATION INTERVAL (NON-ADAPTIVE) OR MAXIMUM/INITIAL

INTEGRATION INTERVAL (ADAPTIVE) SET TO FIVE MINUTES FOR VARIOUS TECHNIQUES; LISTED FROM BEST TO WORST.

max rel abs err, NPH

Program Solver Type Application impulse pulse †CPU time (s) Quality

Octave odebda MEBDF stiff 3.01 e -5 8.82 e -5 0.720 exceptional

MATLAB ode23s RK stiff 7.84 e -4 5.28 e -4 0.250 exceptional

MATLAB ode45 RK non-stiff 3.96 e -5 1.11 e -3 0.109 good

Octave ode45 RK non-stiff 2.23 e -4 6.40 e -5 0.788 good

MATLAB ‡ode4 RK – 6.64 e -6 3.34 e -2 0.219 limited

Octave ode23 RK non-stiff 1.63 e -2 1.67 e -1 0.488 very limited

†Octave and MATLAB run on different computers.
‡Non-adaptive solver uses five times oversampling.
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Fig. 5. Pharmacokinetic absorption curves for the six types of insulin
included in the Wong et al. model [1].

= eAi(t−ti)xi +

„
Z t

ti

Qie
Di(t−τ)

Q
−1
i p(τ) dτ

«

Bdi

= eAi(t−ti)xi + Qi

„
Z t

ti

eDi(t−τ)p(τ) dτ

«

Q
−1
i Bdi.

(17)

Applying integral (17) for a pulse lasting h minutes gives

x(t) =
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 , t ≤ ti

eAi(t−ti)xi +
1

h
QiD

−1
i

h

eDi(t−ti) − I
i

Q
−1
i Bdi,

ti < t ≤ ti + h

eAi(t−ti)xi +
1

h
QiD

−1
i eDi(t−ti)

h

I − e−hDi

i

Q
−1
i Bdi,

t > ti + h.
(18)

REFERENCES

[1] J. Wong, J. G. Chase, C. E. Hann, G. M. Shaw, T. F. Lotz, J. Lin, and
A. J. Le Compte, “A subcutaneous insulin pharmacokinetic model for
computer simulation in a diabetes decision support role: Model structure
and parameter identification,” J. Diabetes Sci. Tech., vol. 2, no. 4, pp.
658–671, July 2008.

[2] ——, “A subcutaneous insulin pharmacokinetic model for computer
simulation in a diabetes decision support role: Validation and simula-
tion,” J. Diabetes Sci. Tech., vol. 2, no. 4, pp. 672–680, July 2008.

10
0

10
1

0.95

1

1.05
Maximum stability function value, 10000 mU

h (min)

φ
(λ

m
a

x
h
)

Fig. 6. Stability function values.

10
0

10
1

10
−10

10
0

Relative error at peak, 10000 mU

h (min)

|I
s
im

 −
 I

lin
| 
/ 

I lin

 

 

See Fig. 5 Key

Fig. 7. Relative error at peak plasma insulin concentration.

10
0

10
1

10
−10

10
0

Maximum relative abs error, 10000 mU

h (min)

|I
s
im

 −
 I

lin
| 
/ 

I lin

 

 

See Fig. 5 Key

Fig. 8. Maximum relative absolute error of plasma insulin concentra-
tion.

[3] G. Nucci and C. Cobelli, “Models of subcutaneous insulin kinetics. A
critical review,” Comp. Methods Prog. Biomed., vol. 62, pp. 249–257,
July 2000.

[4] E. Mosekilde, K. S. Jensen, C. Binder, S. Pramming, and B. Thorsteins-
son, “Modeling absorption kinetics of subcutaneous injected soluble
insulin,” J. Pharmacokin. Biopharm., vol. 17, no. 1, pp. 67–87, 1989.

[5] T. Søeborg, C. H. Rasmussen, E. Mosekilde, and M. Colding-Jørgensen,
“Absorption kinetics of insulin after subcutaneous administration,” Euro.

J. Pharmaceut. Sci., vol. 17, no. 1, pp. 67–87, 2009.
[6] B. T. Kulakowski, , J. F. Gardner, and J. L. Shearer, Dynamic modeling

and control of engineering systems. New York: Cambridge, 2007.
[7] L. F. Shampine, Numerical Solution of Ordinary Differential Equations.

New York: Chapman & Hall, 1994.
[8] C.-T. Chen, Linear system theory and design. New York: Harcourt

Brace Jovanovich, 1984.

3904


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

