
  

 

Abstract—This paper presents use of an unobtrusive 

pressure sensor array for simulated central apnea detection. 

Data was collected from seven volunteers who performed a 

series of regular breathing and breath holding exercises to 

simulate central apneas. Results of the feature extraction from 

the breathing signals show that breathing events may be 

differentiated with epoch based variance calculations. Two 

approaches were considered: the single sensor approach and 

the multisensor vote approach. The multisensor vote approach 

can decrease false positives and increase the value of Matthew’s 

Correlation Coefficient. The effect of lying position on correct 

classification was investigated by modifying the multisensor 

vote approach to reduce false positives segments caused by the 

balistocardiogram signal and as such increase sensitivity while 

maintaining a low false positive rate. Intersubject classification 

results had low variability in both approaches. 

I. INTRODUCTION 

his paper presents an overview of sleep disordered 

breathing and identifies older adults as a population 

group that could benefit from advances in the delivery of 

sleep assessments and apnea monitoring technology.  We 

present an approach to the delivery of health care technology 

in non-traditional environments (e.g.: homes, smart 

apartments, palliative and continuing care) in part as a 

response to increasing pressures on services from the sleep 

lab and care needs of the increasing demographic of older 

adults [1]. The preliminary analysis presented here makes use 

of signal processing algorithms applied to non-contact 

pressure sensor array data to identify simulated apneas. An 

innovative aspect of this research is that only unobtrusive 

sensors are used for apnea detection. In permanent 

installations, the pressure sensors used in this work easily fit 

underneath a mattress, are not noticeable to the user. 
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II. SLEEP AND HEALTH IN OLDER ADULTS 

A. Impact on Health 

Untreated sleep disorders can significantly affect the 

quality of life and health of sufferers. Many sleep disorders 

(e.g. apnea, movement disorders) are more prevalent in 

certain population groups. Older adults are at particular risk 

of sleep disorders due to comorbidities which may impair 

sleep or exacerbate existing sleep disorders and result in 

excessive daytime sleepiness and cognitive impairments [2]. 

Sleep disturbances also increase the risk of falling for older 

adults; falls are a primary cause of morbidity and mortality 

[2]-[3]. Studies of the relationship between sleep and aging 

show that 50% of older adults (65+) have difficulty falling 

asleep and maintaining sleep, and that 20-30% have sleep 

apnea [3].  

B. Sleep Disordered Breathing (SDB) 

Of the many types of SDB, sleep apnea is the most 

prevalent affecting 4% of men and 2% of women [3]. Apnea 

is linked to many health problems: cardiovascular (increased 

blood pressure, heart rate and risk of stroke), cognitive 

(impaired concentration, severe daytime sleepiness, 

headaches) and other effects such as mood changes and an 

“increased risk of being involved in a deadly motor vehicle 

accident” [4].  

Apnea is identified clinically as a cessation of airflow for 

greater than ten seconds. The majority of sleep apnea events 

are obstructive and a minority are central. Obstructive sleep 

apnea (OSA) are characterized by a lack of airflow in spite 

of respiratory efforts, while central sleep apnea (CSA) is 

caused by lack of respiratory drive and decreased oxygen 

saturation and is more prevalent in  older adults with 

congestive heart failure [3], [5].   

C. Sleep Monitoring in Smart Homes 

The value of unobtrusive sensors to sleep and apnea 

monitoring is that they require no user interaction or 

compliance and that they can collect long-term health 

information without modifying the subject‟s behavior. This 

is especially relevant for patients with cognitive difficulties 

or patients who do not want to wear monitoring devices.  

III. SENSORS FOR SLEEP AND APNEA ASSESSMENTS 

A complete polysomnography (PSG) is a relatively 

invasive procedure that includes multiple head, face and 

body electrodes [6].  
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A. Contact Sensors 

By reducing the complexity and invasiveness of 

equipment compared to a PSG, Khandoker analysed 5-

second segments of a single lead ECG and correctly 

classified 98.96% of CSA and OSA events using wavelet 

decomposition and a neural network [7]. 

B. Wearable Sensors 

Wearable sensors used in activity and sleep-wake 

monitoring studies include actigraphs [8], [9] (usually 

embedded in wrist worn devices or in backpacks) and vests 

and clothing with concealed physiological sensors. Few 

wearable sensors are designed specifically to detect apneas.  

One study [10] used a finger pulse oximeter to study 

children with obstructive and central apneas. Pagani et al. 

found that a change in pulse transit time strongly correlates 

to a change in respiratory effort.  

In another study [11], the airway impedance measurement 

of the air in a continuous positive airway pressure machine 

was studied in ten volunteers with a diagnosis of OSA. Yen 

et al. correctly classified all 25 OSA and 25 CSA events by 

using a threshold value on the airway impedance. 

C. Pervasive Sensors 

Visual cameras that may detect breathing motion by 

tracking a projected pattern on the bed [12] or infrared 

cameras that analyze the apparent air temperature near the 

nose and mouth [13] have been presented as possible 

alternatives. Steele, Secombe and Brookes [14] however 

concluded that the use of all types of video cameras for 

health sensor technologies was strongly rejected by older 

adults in the context of long-term monitoring. Video 

cameras are considered non-contact but obtrusive, and suffer 

from additional privacy concerns (and potential for misuse) 

compared to other non-contact sensors [1]. 

Pressure sensitive mats, which form pressure distribution 

pictures from an array of embedded pressure sensors, can 

provide an enriched set of data. They allow for movement 

localization and posture and position recognition [15], limb 

movements [15], as well as the ability to extract pulse [16], 

and respiration [16]. This paper presents exploratory work to 

extend the use of pressure sensors to detect simulated central 

apneas. 

IV. METHOD 

A. Study Design 

We examined the characteristics of breathing signals, 

and the feasibility of a pressure sensitive mat to recognize 

simulated central apnea in adult volunteers. Seven male and 

female participants between 20 and 30 yrs old were recruited 

to lie on their own beds and perform a variety of breathing 

patterns and body movements while pressure distribution 

information was collected from a pressure sensitive mat 

beneath their torsos.   

During the experiment, they were asked to lie quietly on 

their back for a few minutes, and then hold their breath for 

up to 30 seconds to simulate central apneas as suggested in 

[17]. The volunteers were informed that they could stop 

breath holding at any point in the 30 seconds if they felt the 

need to breathe, though many continued for a few additional 

seconds. After regular breathing had begun again, they were 

asked to change posture and repeat the process at least twice 

more so that a minimum of three sets of events were 

recorded per individual: one for prone, supine and side lying. 

B. Data Acquisition 

1) Pressure Sensitive Mat Setup 

A Tactex Controls Inc., Bed Occupancy Sensor (BOS) 

was installed on top of the bed. This pressure sensitive mat 

contains 24 pressure sensors in a configuration of eight rows 

of three sensors each at a resolution of 10cm between sensor 

rows and columns. The top of the mat was placed just below 

the bottom of the pillow area to obtain data from the 

shoulders and torso. For most participants, the bottom of the 

80cm mat reached just below the hips. 

The BOS was connected serially to a Compaq Armada 

700 MHz laptop. Software provided by Tactex Controls Inc. 

recorded timestamps and data from each of the pressure 

sensors into a comma delimited text file. The data was 

recorded at 10Hz. 

2) Annotations 

Apnea and posture were noted by the investigator during 

data acquisition in a time-stamped log file. Actual start and 

end times for apnea events were realigned to account for 

typing delay by examining the sensor data. Posture (prone, 

left side, right side, and supine) and position changes were 

also manually annotated from the log file and realigned by 

examination of the sensor data. 

C. Data Analysis 

The recorded data was analyzed in MATLAB 

(Mathworks). Muscular movements, including limb 

movements and position changes, were automatically 

detected and flagged using a previously developed algorithm 

[18]. The aim of the classifier was to (i) correctly identify 

apneas because they are the rare and (ii) limit the number of 

false positives (breaths classified as apneas).  

1) Breathing Extraction 

Between movements, each sensor's output was filtered 

through a 30-second moving average to provide a mean load 

level. The mean load level is due to the weight of the 

participant loading the sensor and can be removed to recover 

the breathing signals without weight loading changes.  

2) Apnea Analysis 

    Signal variance was identified to be a main feature for 

classification of apnea events because it is a measure of the 

spread, or distribution, of the signal over a time interval. A 

1-second moving variance (σ
2
) (1), was extracted from each 

of the sensor outputs (x) at each sample time and compared 

to a threshold value to classify each sample as 'apnea' (if the 

variance is less than the threshold) and 'breath' (if the 

variance is greater than the threshold).  

))]([)]([(
1

)( 222 ixEixE
N

N
ix

           (1) 

3918



  

We considered two approaches: the single sensor approach 

and the multisensor vote approach. For the single sensor 

approach, each pressure sensor signal is treated as an 

experiment, and the results of each of 24 pressure sensor 

signals per patient file are combined. This is akin to placing 

one pressure sensor at a random location within the area 

covered by the mat and studying its classification ability. In 

the fused vote method, a vote is made every sample based on 

how many sensors were classified as apnea. Increasing the 

number of „apnea‟ votes needed to classify a sample as 

apnea can reduce false positives. 

To address aim ii) of this paper, Matthew‟s correlation 

coefficient (MCC), shown in (2), is used to evaluate a 

classifier with unevenly distributed classes. MCC uses true 

positives (TP), true negatives (TN), false positives (FP), and 

false negatives (FN), to calculate a score [-1, 1], where +1 

represents a perfect prediction, 0 a random prediction and -1 

an inverse prediction. 
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First, the effect of varying the number of required votes 

for an apnea decision was investigated. Then, two 

experiments were conducted: the first used the leave one out 

approach to determine the interparticipant variability in 

choosing an optimal threshold on the variance. The second 

experiment divided the data according to participant position 

and observed the positional effect on classification. 

 
V. RESULTS AND DISCUSSION 

The volunteers held their breath for a total of 25 simulated 
apneas with a mean of 28.90s, and a standard deviation of 
9.36s. Simulated apneas represented 6% of all experiment 
data. The MCC, the true positive rate (TPR) (or sensitivity) 
and false positive rate (FPR) (or false alarm rate) were 
calculated for each threshold used, in both experiments. 

A. Pressure Variance Histogram     

Fig. 1 is a histogram of the 1-second moving variance 
signal, for 100s of prone breathing for a participant. It can be 
compared to Fig. 2, which is a histogram of the 1-second 
moving variance in a 30s apnea sample, which has a much 
smaller range. In the following experiments, the threshold 
value for the variance was tested in 0.05 increments, in a 
range from 0 to 10. 

B. Effect of Multisensor Voting 

The single sensor method was compared to the multisensor 

vote method. For the multisensor vote method, the number 

of votes was varied from 1 to 24 because the sensor array 

has 24 individual sensors.  

Fig. 3 shows the effect of changing the number of votes 

required for an „apnea‟ decision in the multisensor vote 

method. Varying the number of votes was successful at 

dramatically lowering the FPR. 

The TPR also decreases, but not as rapidly and stabilized 

at 21 votes. The MCC has its quickest rise between 21 and 

24 votes. Based on fig. 3, the number of votes used in the 

multisensor vote method in section C is 24. This indicates 

that consensus voting produces the best MCC and the lowest 

FPR, which are the two aims of the classifier. 

C. Interparticipant Variability Results 

Table I shows the results from the interparticipant 

classification results using the leave one out approach. The 

validation results were combined to produce an average 

(Avg) and standard deviation (Stdev) value for each column. 

The thresholds used for the 1-second variance that 

maximized the MCC are similar for each individual 

participant, indicating that individual participant data had a 

limited impact on the training. All MCC values are positives, 

indicating the classification is better than random, but MCC 

values are still quite low. Across all participants, the TPR 

and FPR values were consistent, as seen in the low stdev, 

showing the stability of the pressure variance as an indicator 

of simulated apneas. The low interparticipant variability 

suggests that the feature of pressure variance is common 

across all participants as an indicator of simulated apneas.  

 

 

Figure 1.  Histogram of prone breathing 

 

Figure 2.  Histogram of prone apnea 

 

Figure 3.    Effect of changing the number of votes 
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D. Effect of Position 

Table II shows results for positions (prone, supine, side) on 

the classification of samples of apnea for the single and 

multisensor methods. The threshold that gives the best MCC 

value is lowest for the side position in both approaches. 

Inspection of the raw data revealed that in side lying, more 

individual sensors were unloaded or saturated. These sensors 

had a very small variance and were very often classified as 

apnea regardless of participant activity. These inactive 

sensors may have biased the classification towards a lower 

threshold. The higher threshold and lower TPR in the 

multisensor vote method are in part due to the 

ballistocardiogram signal. This pulse-based signal appears in 

many sensors, during many simulated apneas, and 

contributes to a higher variance. The single sensor method 

has a high TPR, especially in the side position, however the 

FPR consistently exceeds 0.5, which is unacceptable for 

many clinical applications.  

VI. CONCLUSION 

This paper presented a method to identify simulated 

central apnea events using an array of pressure sensors 

placed on top of a mattress. The multisensor vote approach 

shows how optimizing the number of sensor votes decrease 

false positives and increase the MCC. The distribution of the 

pressure sensor output‟s variance changes during breathing 

events and this allows the 1-second variance to be a useful 

classification feature. Filtering to remove the 

ballistocardiogram signal could further reduce false 

negatives as could adding other pressure signal features to 

the classifier. 

 

VII. FUTURE WORK 

The developed analysis will be compared to the signals of 

resistance plethysmography respiratory bands recorded 

during attended polysomnography in older adults.   
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TABLE I AVERAGED INTERPARTICIPANT RESULTS 

Threshold TPR FPR MCC # Votes 

Single Sensor 
Avg 1.80 0.85 0.64 0.10 N/A 

Stdev 0.00 0.12 0.13 0.04  

Multisensor Vote 
Avg 8.42 0.57 0.05 0.48 24 

Stdev 0.73 0.18 0.03 0.15  

 
TABLE II RESULTS SEPARATED BY POSITION 

% apnea Thresh

old 

TPR FPR MCC    #Votes 

Single Sensor      

Prone 7.34 7 0.86 0.57     0.15 N/A 
Supine 5.55 1.65 0.92 0.70 0.11 N/A 

Side 6.18 0.15 0.83 0.59 0.12 N/A 

Multisensor Vote    

Prone 7.34 10 0.51 0.03 0.53 23 

Supine 5.55 7 0.65 0.24 0.63 24 

Side 6.18 4.8 0.61 0.02 0.57 24 
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