
  

  

Abstract—Sleep disturbances are prevalent, financially 

taxing, and have a negative effect on health and quality of life.  

One of the most common sleep disturbances is obstructive sleep 

apnea-hypopnea syndrome (OSAHS) which frequently goes 

undiagnosed.  The gold standard for diagnosing OSAHS is 

polysomnography (PSG)--a procedure that is inconvenient, 

time-consuming, and interferes with normal sleep patterns.  We 

are investigating an alternative to PSG in which unobtrusive 

load cells fitted under the bed are used to monitor movement, 

heart rate, and respiration.  In this paper we describe how load 

cell data can be used to distinguish between clinically relevant 

disordered breathing (apneas and hypopneas) and normal 

respiration.  The method correctly classified disordered breath-

ing segments with a sensitivity of 0.77 and a specificity of 0.91. 

I. INTRODUCTION 

LEEP disorders pose a huge financial, health, and quality 

of life burden worldwide. Estimates of the prevalence of 

sleep disorders in the US range from 50 to 70 million people 

[1], and as many as 9% of middle-aged American men suffer 

from sleep disordered breathing [2]. At least 80% of these 

people may not have received a clinical diagnosis [3]. Sleep 

disordered breathing leads to poor sleep quality, resulting in 

fatigue and day-time sleepiness that can lead to reduced 

cognitive capacity, ineffective work, accidents, and an 

increased risk of cardiac morbidity and stroke. The direct 

cost of treating sleep disorders has been estimated in the 

range of $30-50 billion per year; indirect costs including 

absenteeism from work and fatigue-related accidents has 

been estimated to be $210 billion [1]. 

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is 

characterized by recurrent episodes of disordered breathing. 

The clinical diagnosis requires five or more obstructed 

breathing events per hour during sleep, accompanied by 
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either daytime sleepiness or symptoms such as recurrent 

choking or waking during sleep. Disease detection and 

identification of severity need not distinguish apneas from 

hypopneas, and a single apnea-hypopnea index (AHI) is 

generally accepted for both clinical and research use [4, 5]. 

While obstructive apneas and hypopneas share the same 

cause and effects of sleep disturbance and oxygen instability, 

central apneas have a separate pathophysiology related to 

impaired respiratory control [4]. While these events are also 

included in the AHI, it is clinically useful to distinguish 

central apneas from obstructive respiratory events to 

distinguish obstructive sleep apnea from central apnea or 

patients with both disorders [4]. 

The gold standard for diagnosing sleep problems is 

overnight polysomnography (PSG), an obtrusive test in 

which patients spend a night in a sleep lab wired to up to 15 

different devices for measuring airflow, movement, and 

electrical brain signals. The test is inconvenient, time-

consuming, and interferes with normal sleep patterns [6].  

Therefore, lower cost methods for testing may improve 

disease detection and access to care for a disorder that is 

highly prevalent and necessitates the testing of large numbers 

of patients.   

Load cells placed under each support of a bed offer a 

unique opportunity to continuously and unobtrusively 

monitor patients while they sleep. The patterns of changing 

force at each support can be analyzed, and inferences about 

various sleep parameters can be made.  Load cell data can be 

collected continuously in a person’s home, giving physicians 

and researchers the ability to monitor a patient’s sleep over 

time without interfering with the patient or their sleep.  

Load cells have recently been used in our and other 

laboratories to detect [7, 8] and classify [9] movements in 

bed, as well as to assess sleep hygiene [10]. Recent studies 

have also shown the validity of using load cells placed under 

the supports of a bed to detect heart rate [7, 11] and 

respiration [7].  In the current study we have extended this 

previous work to evaluate the ability of load cells to detect 

clinically relevant disordered breathing such as apneas and 

hypopneas. We extracted features from the raw and filtered 

load cell signal and used these to train a Bayesian classifier 

to differentiate normal and disrupted breathing. 

II. METHODS 

A. Data collection and preparation 

Load cells were placed under the supports of a bed in the 
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OHSU sleep clinic, one under each of the existing six 

supports. Data were collected on four patients admitted for 

regular polysomnography (PSG) evaluation.  Both full 

polysomnography data and load cell data were collected for 

each patient and time-aligned for analysis.  

The PSG data were scored clinically by a single sleep 

technician following American Academy of Sleep Medicine 

(AASM) guidelines.  This scoring was then reviewed by a 

sleep medicine physician. Polysomnographic records were 

then analyzed for periods of central apnea, obstructive 

apnea, and hypopnea. The clinically determined times and 

durations of these events were used to segment the load cell 

data for analysis. Because the majority of events are 

obstructive in nature [5], and because during routine PSG 

measures for discriminating central from obstructive 

hypopneas are not available [4], we grouped hypopneas and 

obstructive apneas for the analysis.  Across the four subjects, 

a total of 300 representative samples of hypopneas/ 

obstructive apneas (N=150) and of central apneas (N=150) 

were segmented from the load cell data.  An additional 150 

samples of normal breathing that did not contain respiratory 

events were selected across all four subjects and segmented 

from the load cell data.  The duration of the normal breathing 

segments was chosen to be 20 seconds, which was the 

average length of the 300 apneic events.  

For each subject, the digital load cell signal x
i
(t) was 

sampled at 2KHz for each load cell i, which was more than 

double the 60dB point of the anti-aliasing filter.  The load 

cell signals were then low-pass filtered to 5Hz and then 

decimated to 10Hz for data reduction purposes. The resultant 

signal x
i
d(t)  was further band-pass filtered using a 

combination of 7th
 order high and low-pass Chebyshev Type 

II filters to isolate frequencies (0.2 – 0.33 Hz) expected to 

contain the respiration signal [12]. The high-pass filter had a 

stop-band edge frequency of 0.05 Hz, was monotonic in the 

pass-band, and attenuated the stop-band by 40 dB. The low-

pass filter was similar to the high-pass filter but with a stop-

band edge frequency of 0.45 Hz.  

The resultant decimated (xi
d(t)) and band-pass filtered 

(xi
BP(t)) signals for each load cell i were then segmented 

based on the polysomnography data as described above. Fig. 

1 shows sample signals from the PSG, the decimated load 

cell segment xi
d(t) and the filtered load cell segment xi

BP(t), 

for each class of breathing data (normal breathing , central 

apnea, and hypopnea).  

B.  Feature Extraction 

Eight features were extracted from each of the load cell 

segments for each load cell i. From each segment of the 

decimated signal xi
d(t) we extracted the following features. In 

the descriptions below, the subscript k represents the k
th 

segment for the particular load cell; we have dropped the 

subscript i (indicating which of the six load cell signals the 

 
Fig.1.  Patient data from three different 30 second epochs during the sleep study.  The left column depicts an epoch of normal breathing, the middle 
column depicts a central apnea, and the right column depicts a hypopnea.   The upper row contains decimated data from the load cell placed under the 
upper middle support of the bed.  The middle row contains filtered load cell data from the same sensor.  The bottom row contains data from the PSG 
respiratory inductive plethysmography abdomen belt during the 30 second epoch.  The vertical line indicates the time point where the respective 
respiratory event was scored by an OHSU sleep lab technician. 
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segment came from) for clarity. 

 (1)  Variance sk
2 in the signal over all samples of the 

decimated respiratory segment.   

(2) Normalized average power of the signal in each of the 

three frequency bands: [0-0.5 Hz], [0.6-0.75 Hz], and [0.75-

5 Hz].  These measures provide us with information about 

the relative frequency content in each of these bands.  To 

calculate the average power, we treated each individual 

signal segment as weakly stationary.  The power spectral 

density (PSD) Sk of each segment was calculated by first 

high-pass filtering to remove the trend, then multiplying the 

filtered segment by a Blackman window to get ( ) ,k

Bx t  and 

finally using the normalized and squared absolute value of 

the Fourier transform (1024 point) on this modified segment: 
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The Blackman window reduces the side-lobe amplitude in 

the estimated spectrum by about 58dB, and has a roll-off of 

about 18dB per octave.  The average power Pk in a given 

frequency band [F1, F2] was calculated as 
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 (3) Spectral entropy, SEk, of the signal calculated by 

finding the PSD of x
k
B(t) as shown in (2), segmenting the 

PSD into 100 equal frequency bins, f, normalizing each bin’s 

average power to find its probability density pf, and using the 

equation:  
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From the filtered signal segments x
k
BP(t) we extracted the 

following additional features: 

(1)  Variance sk
2 in the signal over all samples of the 

filtered respiratory segment.   

 (2) Range, Rk, of the data values in the period calculated 

using the maximum and minimum data values:  

 ( ) ( )max ( ) min ( ) .k k

k BP BPR x t x t= −  (5)  

(3) Respiration amplitude, RAk, estimated by dividing each 

segment into overlapping 5 second windows that have 

starting points offset by 0.1 seconds, finding the range of the 

data in each window, and then taking the median of all the 

ranges.  A simple peak detection algorithm could not be 

utilized since peaks are not always easily identifiable in 

disordered breathing, especially in cases of central apneas. 

C. Classification 

     Classification of the respiratory segments was done 

separately for each of the six load cells. First, the features 

described above were calculated for each segment and the 

data were separated into training and testing sets. Let the 

vector of classes (central apnea, obstructive apnea/hypopnea, 

and normal breathing) be ,w and our feature set be .x  We 

want to estimate the probability that a given segment in our 

test set x comes from a particular class ,
i

w ( ).iP w x By 

Bayes rule, we know 

3

1

( ) ( )
( )

( ) ( )

i i

i

j j

j

p w P w
P w

p w P w
=

=

∑

x
x

x

 

We assumed that can use our training sample set D  to 

estimate the prior probabilities ( )iP w  as ( ).
i

P w D  Then, we 

used Bayesian learning to determine the class-conditional 

probabilities ( )
i

P wx by fitting the features from each class 

with a multivariate normal density. We assumed that our 

feature set x is distributed according to a multivariate normal 

distribution with expectations µ and a variance-covariance 

matrixΣ and used our sample set D  to fit the distribution. 

Likelihood ratios were used to assign each observation to 

one of the groups [13].  

The performance of the classifier was assessed using 10-

fold cross validation [14]. The 150 data segments from each 

class were divided into 10 disjoint sets of 15 samples. The 

classifier was trained 10 times, each time with one set of 

samples held out for validation. The 10-fold cross validation 

was performed for each of the six load cells, and each load 

cell was allowed to ‘vote’ for the classification of each event. 

The class with the most votes was selected as the predicted 

class. In the case where more than one class shared the most 

votes, the class predicted by the load cell under the upper 

middle of the bed was selected.   Finally, the sensitivity and 

specificity of the classifier were averaged over the ten 

iterations for each class.  

Clinically, the measure most often used to assess sleep 

disordered breathing is the Apnea-Hypopnea Index (AHI), 

which does not differentiate between types of apneas or 

hypopneas. Therefore, we also separated the load cell 

respiratory segments into two classes: periods of disordered 

breathing (combined data of the hypopneas, obstructive 

apneas, and central apneas, N=300), and periods of normal 

breathing (N=150). The average sensitivity and specificity 

for this classifier were also found using 10-fold cross 

validation, with 10 disjoint sets of 30 samples that were 

randomly sampled without replacement.  The 150 normal 

breathing segments were divided as already explained.   

III. RESULTS 

Table I shows the sensitivity and specificity obtained for 

each type of breathing event. While the specificity is 

reasonably high for the disordered breathing events (central 

TABLE I 
 SENSITIVITY AND SPECIFICITY FOR ALL CLASSES 

 Sensitivity Specificity 

Hypopnea/Obstructive Apnea 0.65 0.90 

Central Apnea 0.82 0.92 

Normal Breathing 0.84 0.84 
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apneas and hypopneas/obstructive apneas), it is clear that the 

sensitivity for detecting hypopneas/obstructive apneas is 

poor. The confusion matrix (Table II) shows that 

hypopneas/obstructive apneas were primarily confused with 

normal breathing, although some were confused with central 

apneas. The feature that best differentiated the 

hypopneas/obstructive apneas from other classes was the 

normalized power in the [0.6-0.75 Hz] frequency band.  

Results were better when the disordered breathing events 

were considered as a single group, as is done clinically when 

calculating AHI. The sensitivity and specificity for 

discerning disordered breathing segments was 0.77 and 0.91 

respectively, and the sensitivity and specificity for discerning 

normal breathing segments was 0.91 and 0.77 respectively.  

IV. DISCUSSION 

Our research indicates that using load cells under the 

supports of a bed has significant potential for automatically 

detecting sleep apnea.  The overall performance of the 

classifier in separating normal breathing from disordered 

breathing was acceptable, although we are continuing to add 

features to improve the classification. We are currently 

investigating features that provide information about the time 

course of the signal during the event, such as features 

derived from wavelets.  We are also in the process of 

training and testing our classifier using data collected from 

approximately 20 patients in the sleep lab, and we plan to 

test the performance of other classification methods such as 

support vector machines in the future. 

Other methods have been used to unobtrusively detect 

respiration of individuals lying in bed.  One method has been 

to attach a mechanical sensor to a mat that can be placed on 

top of the bed [15].  The technique has high accuracy in 

detecting heart and respiration rates; however, it has a few 

limitations.  The sensor is used in consort with a thin mat 

that alters the sleeping surface of the bed, and it must be 

placed near the thorax of the patient. 

The current research focused on the classification of 

different breathing events from load cell data segmented 

using the PSG data as a gold standard. We are now working 

on combining our previous work on automatic segmentation 

of continuous load cell data into quiescent periods and 

periods of movement with our classification of breathing 

segments.  Our ultimate goal is to develop an algorithm that 

utilizes our classifier to automatically detect disordered 

breathing episodes from the quiescent periods of load cell 

data collected over an entire night. This is a necessary next 

step to be able to use the approach to estimate the apnea-

hypopnea index from in-home data.   

The true potential of this technology for assessing sleep 

disorders lies in its unobtrusive nature, and on the fact that it 

could be used to assess disrupted sleep in a person’s own 

bed. Once in place, multiple nights of data may be obtained 

without a significant increase in cost. The potential cost 

savings in a tool that could be used to pre-screen for sleep 

apnea, or to follow treatment, is significant. Load cells may 

make informative longitudinal unobtrusive monitoring of 

sleep a reality. 
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TABLE II 
 CONFUSION MATRIX FOR ALL CLASSES 

 Actual class 

Estimated Class 
Hypopnea 

/Obstr. Apnea 
Central 
Apnea 

Normal 
Breathing 

Hypopnea/Obstr. 
Apnea 

97 15 16 

Central Apnea 17 123 8 

Normal Breathing 36 12 126 
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