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Abstract— In this paper, a power series and a Fourier series
approach is used to solve the governing equations of motion
in an elastic axi-symmetric vessel, assuming that blood is an
incompressible Newtonian fluid. The time averaged flow has
shown to be greater than the steady state flow leading to a larger
wall shear stress. Oscillations can also be observed, which is not
present in the steady state solution. This is due to the nonlinear
momentum terms causing interaction between the harmonics.

I. INTRODUCTION

Mathematical modelling of physiological flow is a useful

tool to understand and predict physiological effects in the

vascular system. Wall shear stress in particular has been

related to vascular diseases such as atherosclerosis [1], which

can be fatal if left untreated. The modelling of the vascular

flow is complex due to the unsteady non-linearity of the

governing equation and its interaction with the vessel wall.

Little work has been done to analyse the non-linear behaviour

of the flow.

A novel technique is thus proposed here which applies a

non-linear two dimensional, axial and radial, algorithm to

simulate blood flow in a single axi-symmetric elastic vessel

with no curvature. A power series over the radius and a

Fourier series over time is used to represent the velocity

whilst the radius of the vessel is represented using a Fourier

series. These are substituted in to the governing equations of

motion converting the partial differential equations, PDEs,

in to a series of coupled ordinary differential equations,

ODEs, which significantly reduces the computational cost. A

similar algorithm to the one used here has been explained in

more detail in [2]. Wall shear stress depends on the velocity

profile and the variation of it along the axial length will be

examined. The effects of the stiffness and Reynolds number

on the oscillations will also be examined here.

II. THEORY

A. Governing equations of motion

The governing equations of motion for an incompressible

fluid can be obtained from the Navier-Stokes equations.

For an axi-symmetric vessel with no curvature, this can be

expressed in polar form (x, r). Taking orders of magnitude
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[3], the governing equations can be expressed as:
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and the continuity equation as:
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where Ux and Ur are the respective axial and radial velocity

components, ρ is the density of the fluid, p the pressure and

ν the kinematic viscosity.

A relationship between the pressure and the radius of the

vessel is required to solve the equations. The most common

form is a simple power-law relationship [4], of the form:

p − pE = G0

(

R

RE

− 1

)

, (4)

where pE is the pressure of the vessel at the equilibrium state,

R is the radius of the vessel, RE is the radius of the vessel at

the equilibrium state and G0 the wall stiffness. Equation (4)

thus assumes a linear relationship between the pressure and

the radius and this is used here as a first step for simplicity.

B. Trial solution

To solve the governing equations, a power series approach

over radius and a Fourier series over time is proposed. The

axial velocity is thus of the form:

Ux (x, r, t) =
M
∑

m=0

N
∑

n=−N

Um,n (x)

{

r

R (x, t)

}m

eınωt, (5)

where the Um,n values are the coefficients of the series, ω
is the angular frequency and R is the radius of the vessel

which, using the same approach as above, can be written as:

R (x, t) =

Q
∑

q=−Q

Rq (x) eıqωt, (6)

where Rq are the coefficients of the radius series. The power

series over radius is in this form, r/R, so that it is possible to

set the boundary conditions at the walls. The Fourier series

assumes that the flow is periodic. This is very relevant to

the cardiovascular system due to its strong periodicity. The

trial solution of the axial velocity (5), provides a complete

solution when M ,N ,Q → ∞, and approximate solutions can
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be obtained for finite values of M , N and Q. In practice, we

set N = Q since the highest harmonics of interest in both

cases are likely to be the same.

By substituting the trial solution to the continuity equation

(3), the radial velocity can be directly derived. Both solutions

can be substituted to the governing equations of motion (1).

Re-arranging and non-dimensionalising the variables such

that y = r/R, z = x/L, t′ = ωt, um,n = Um,n/U
and Y = R/RE (L is initial vessel length and U is the

characteristic velocity), the momentum equation (1) can be

written as (7), where St′ = ωL/U is the scaled Strouhal

number, κ = G0/ρU2, ε = RE/L and Re = URE/ν is the

Reynolds number. Equation (7) is the final equation. Note

that there are only three non-dimensional quantities, εRe,

St′ and κ, required to formulate the complete solution. It is

possible to express (7) in matrix form as:

A
d

dz
(u) + B

d

dz
(Y) + c = 0, (8)

where A and B are matrices and c is a vector. The matrices

and vector are not expressed in full due to space limits.

To solve numerically, the boundary conditions need to be

considered. At the vessel walls a no-slip condition is assumed

here, although any suitable boundary conditions could be

applied as desired. The non-dimensional axial velocity, u, at

the vessel wall is equal to zero, therefore:

u(z, y = 1, t′) =
M+1
∑

m=0

u2m,n = 0. (9)

The radial velocity is equal to the rate of change of the radius

with time, which in non-dimensional terms is given as:

v (z, y = 1, t′) =
St′

Y

∂Y

∂t′
, (10)

where v is the non-dimensional radial velocity. This leads to

the following equation:
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∑

m=0

1

2 (m + 1)

(
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−
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Yq

)

= St′ınYn, (11)

which must be satisfied at each harmonic, from −N to N .

The number of unknowns is matched by the number of

equations, and thus it is possible to solve this problem.

III. RESULTS

The aorta was considered here as the assumption of a

Newtonian fluid makes it the most relevant. Considering the

vessel dimensions and taking the average base velocity to

be 0.5m s−1, the wall stiffness to be 50kPa [5] and the

fundamental frequency to be 1.2Hz results in the following

non-dimensional quantities: εRe = 156, κ = 190 and

St′ = 12π/25. These initial values can be varied to observe

their effects on the flow field.

A. Steady state behaviour

Considering a quadratic velocity profile at the inlet, u =
u0,0

(

1 − y2
)

will result in a Poiseuille velocity profile

regardless of the number of terms considered in the power

series. The results are not shown here due to the limited

space available. There is an increase in the velocity and a

gradual decrease in the radius along the vessel. This agrees

with the fact that in steady state, the flow rate is constant

along the axial length. There is a decrease in the pressure

along the vessel length due to the friction. This subsequently

reduces the vessel radius due to its linear relationship with

the pressure (4). The velocity therefore has to increase.

An expression for the radial velocity can be obtained from

(3). The radial velocity is towards the centreline when the

vessel contracts. However, this is not very significant since

the radial velocity is so small compared to the axial velocity.

This is due to the non-dimensional term εRe which is much

larger than 1.

B. Dynamic behaviour (first harmonic)

A quadratic velocity profile, u = u0,0

(

1 − y2
)

, was set

at the inlet whilst the vessel wall was oscillated at the

fundamental frequency with an amplitude of 0.05, such that

Y = Y0

{

1 + 0.025
(

eıt′ + e−ıt′
)}

. Fig. (1) shows the ratio

of the time averaged to steady state velocity coefficient and

how this changes with increasing terms in the power series.
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A plot for 100 non-dimensional lengths is shown here to

observe and clearly understand the results.

Fig. 1. Ratio of time averaged to steady state velocity coefficient for
increasing M

Clearly there is a significant difference between the time

averaged and the steady state velocity coefficients. Oscil-

lations in the velocity coefficient can be observed in the

time averaged case whilst the steady state, although not

shown here, is almost linear. The oscillation is due to

the non-linearity of the momentum terms in the governing

equations of motion, which causes the interaction between

the harmonics. Hence, in this case, it is the first harmonic

terms which causes the observed crests and troughs. The

physiological meaning of these are not known and requires

further work. The difference increases with increasing the

order of the power series considered.

The difference in the velocity coefficients between the time

averaged and the steady state also implies that there will be

a difference in the wall shear stress. The complete solution,

including the first harmonic terms predicts flow reversal since

the first harmonic terms are larger, in magnitude, than the

zeroth harmonic terms. The results are not shown here due

to the space limits. The number of terms required in the

power series for an accurate solution has been considered in

[2].

Fig. (2) shows the ratio of the time averaged to steady

state radius coefficient and how this changes with increasing

terms in the power series. The decrease in radius results in

an increase in velocity from continuity. The amplitude of the

oscillations increases with increasing M for the velocity plot

whilst it decreases with increasing M for the radius plot. The

order of the power series has also an effect on the wavelength

of the oscillations which in turn has an effect on the wave

speed. The increase in the order of terms considered results

in an increase in the wave speed.

The non-dimensional wall shear stress, τw, can be ex-

pressed as:

τw =
∂u

∂y

∣

∣

∣

∣

y=1

=
M+1
∑

m=1

N
∑

n=−N

2mu2m,neınt′ . (12)

Fig. (3) shows the ratio of the time averaged to steady state

wall shear stress. The non-dimensional axial length has been

Fig. 2. Ratio of time averaged to steady state radius coefficient for
increasing M

scaled so that the crests and troughs for both plots lie in

phase. Once again, it is clear that there is a difference in

the shear stress between the time averaged and the steady

state. It is also dependent, as expected, with the order of the

power series. The time averaged velocity profile is quadratic

since the higher order terms are almost zero and thus not

significant. However, it will have a significant effect on the

wall shear stress due to the 2m coefficient, as shown in (12).

Hence, as M → ∞, the higher order terms in the power

series have a greater effect on the wall shear stress.

Fig. 3. Ratio of time averaged to steady state zeroth harmonic wall shear
stress for increasing M

The complete solution including the first harmonic terms

predicts oscillations of the wall shear stress with regions

of reversed wall shear stress as expected. Once more, these

results are not shown here due to the limited space available.

The oscillations of the plots will be more significant as

the stiffness of the vessel wall is decreased as shown in fig.

(4). Reducing the wall stiffness leads to an increase in the

amplitude of the oscillations as well as an overall increase in

the velocity coefficient. This is as expected since the stiffer

the vessel wall, the smaller the oscillations in the vessel wall

which leads to smaller oscillations in the velocity.

Fig. (5) shows the plot of the velocity coefficient for

different Reynolds number. Considering εRe → ∞, no
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Fig. 4. Time averaged velocity coefficient for different wall stiffness

viscous effects, the solution would be for an inviscid flow.

The results show that the εRe term has no effect on the

amplitude of the oscillations as these are similar nor it has

an effect on the wavelength of the oscillations. However, it

does have an effect on the overall magnitude of the velocity

coefficient along the vessel, this increasing as the viscous

terms have a greater influence.

Fig. 5. Time averaged velocity coefficient for different Reynolds number

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A two dimensional algorithm to solve for the velocity,

pressure and wall shear stress of elastic axi-symmetric ves-

sels has been presented here. The governing PDEs are con-

verted into a series of simultaneous ODEs which can reduce

considerably the computational cost. An elastic vessel with a

quadratic inlet velocity profile was considered for both steady

and unsteady flow. The model predicts that the Poiseuille

flow is a good approximation for fully developed steady flow.

The unsteady flow predicts physiological effects observed

from experiments. The equations presented in this paper

show that there are only three non-dimensional parameters

that govern the effects of the flow: St′, κ and εRe. The order

of the power series considered is important as it has an effect

on the wave speed. The effects these parameters and the

order considered have on the fluid motion and wall motion,

as well as the validity of the preliminary results obtained,

are described in more detail in [2].

There is a clear difference between the time averaged

and the steady state solutions. This is due to the non-

linear momentum terms which lead to the interaction of the

harmonics. Spatial lag between the motion of the wall and

the fluid motion can be observed whilst the fluid motion and

the wall shear stress are in phase. The order of the power

series has an effect on the wavelength of the oscillations

which results in different wave speeds. The time averaged

solution for both the velocity and wall shear stress is greater

than the respective steady state solution. The wall stiffness

has an effect on both the amplitude of the oscillations and

the overall magnitude of the velocity coefficients whilst the

Reynolds number has no effect on the oscillations.

B. Future Works

The difference in the time averaged and steady state

wall shear stress needs to be studied in more detail due

to its physiological importance. The effects the oscillations

of the zeroth harmonic have physiologically requires further

investigation. The number of terms considered in the power

series, the harmonics considered in the Fourier series and

their respective effects on the fluid motion and wall motion

require further work. Comparison with experimental results

would be required to further validate our model.

The Navier-Stokes equation can be coupled with the mass

transport equation to obtain the concentration profile of a

substance in the vascular network. Nitric oxide is believed to

have an effect on vasodilation which in turn plays a role in

vascular homeostasis. A linear pressure-radius relationship

was considered here for simplicity. This can be modified

by changing the power of the radius leading to a non-

linear relationship. This would lead to two complex non-

linear systems to interact with each other giving rise to

more complex behaviour. It is also possible to vary the

wall stiffness along the vessel and observe its effects on

the velocity profile, giving better insights to aneurysms and

atherosclerosis. The method used here is not restricted to

just vascular vessels but could be used to solve for flow in

general conduit vessels since the the mathematical algorithm

presented gives general solutions for flow in a vessel.
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