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Abstract— In physical and rehabilitation medicine physicians
need to perform clinical gait analysis to assess patients walking
ability. Despite the relevant research on motion tracking, gait
analysis technologies are far to be commonly diffused in
clinical practice since they are quite expensive, need high-
structured laboratories and trained personnel who are not al-
ways available. In order to overcome such limitations, this work
proposes a low-cost, video-based portable tool for clinical gait
analysis which provides the bi-dimensional kinematic analysis
of walking. The system processes a video stream by means of
tracking different markers placed in five anatomical landmarks
of the subject’s leg, applying Kalman filter in conjunction
with a method that copes with occlusions. The system has
been validated on a healthy subject, showing that it is able to
reconstruct marker position and leg kinematics even if several
occlusions occur.

I. INTRODUCTION

Clinical gait analysis could play a key role in physical and
rehabilitation medicine (PRM) [1], since physicians need to
perform a complete assessment on their patients in order to
analyze all the factors liable to interfere with their ability
to walk and to propose the best solutions for maintaining or
improving their walking performance [2]-[3].

According to Brand [4] and Baker [3], there are four
principal reasons to perform clinical gait analysis:

1) to diagnose between disease entities;
2) to assess the severity, extent or nature of a disease or

injury;
3) to monitor progress in the presence or absence of

intervention;
4) to predict the outcome of intervention (or the absence

of intervention).
Usually, physicians in PRM evaluate gait performance of

patients using qualitative observational methods [2] or semi-
quantitative clinical scales, such as the Timed Up-and-Go
test (TUG) [5], the Functional Ambulation Categories (FAC)
[6], the Berg Balance Scale (BBS) [7] and the Postural
Assessment Scale for Stroke Patients (PASS) [8].

In the last 30 years, techniques for motion tracking
provided useful tools to objectively assess and evaluate
walking characteristics [3]. In particular, stereophotogram-
metric technology has reached a mature state of development
delivering all features required by conventional gait analysis
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[9]-[10]. Several studies deeply described the patterns of
normal walking [11]-[13], enabling the definition of walking
strategies abnormalities in different kind of patients [14]-
[16].

Even if the usefulness of gait analysis for clinical rehabili-
tation has been widely accepted, the use of such technologies
in clinical practice is far to be commonly diffused. In fact,
despite to high accuracy, repeatability and reliability of
actual technologies for motion analysis, such systems suffer
of some practical problems which limit their diffusion in
clinical centers. Firstly, they are quite expensive, so to not
assure a good cost/benefit tradeoff. Secondly, they need high-
structured, dedicated laboratories and personnel which are
often difficult to find in clinical centers. Finally, they provide
a large amount of data, which require complex pre and post
processing and are not straightforward to be interpreted by
clinicians.

In order to overcome such limitations, this work proposes
a low-cost, video-based portable tool for gait analysis which
is simple to use, require few minutes for the setup and
acquisition of clinical data, and provide few simple indices
which are of interest for physicians. The developed system
use a single conventional camera to record subjects’ move-
ments and provide a bi-dimensional kinematic analysis in
the sagittal plane of the hip, knee and ankle joints during
walking. In the literature, a similar system is presented in
[17], where the authors addressed the problem of tracking
feature points along images sequences to analyze undergoing
human movement. With respect to [17], our system is able
to provide also the bi-dimensional kinematic analysis of
walking.

A dedicated software, implementing a Kalman filter, elab-
orate the recorded videos and reconstruct marker position in
the image plane. A kinematic toolbox use the position of
the markers, placed in five specific anatomical landmarks of
the subject, to calculate the time course of the hip, knee and
ankle angles in the sagittal plane during a gait cycle and
provide some quantitative indices of clinical interest.

II. METHODS

The system automatically tracks human movements with-
out requiring a gait analysis laboratory in order to used
even by non-experts operators, providing quickly and easily
interpretable results. The set up consists of a workstation
connected with a camera, a dark background, a dark tracksuit
with gloves to be worn by patients, a reference marker
used for system calibration, and as many colour markers as
required to perform kinematics analysis (left panel of figure
2). Since we are interested in performing a bi-dimensinal
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gait analysis in the sagittal plane, we have used ten passive
markers (five per leg), six red and four yellow. Indeed, they
have been set on the following five anatomical landmarks
for each leg: (i) anterior superior iliac spine (red marker),
(ii) femur greater trochanter (yellow marker), (iii) lateral
epicondyle of the femur (red marker), (iv) heel (yellow
marker), (v) fifth metatarsal bone (red marker). The camera
has been mounted on a tripod one meter high, at a distance
of 4 meters, approximately. The patients’ gaits have been
recorded for several cycles.

Next subsection presents the processing techniques that we
applied to perform a bi-dimensional kinematic gait analysis
on the sagittal plane.

A. Processing

To extract kinematic information on patients’ gait we first
need to detect the markers and then to establish correspon-
dence between markers instances across frames. The former
task is performed by means of an object detection algorithm,
whereas in the latter one the tracker corresponds objects
across frames.

a) Marker Detection: Identification of image objects
is commonly known as segmentation, which partitions the
image into perceptually similar regions. As marker detec-
tion features we exploit colour information, analyzing the
L*a*b* space. Indeed, although RGB space is usually used
to represent color, it is not perceptually uniform, that is, the
differences between the colors in the RGB space do not cor-
respond to the color differences perceived by humans [18].
Furthermore, the RGB dimensions are highly correlated. In
contrast, L∗a∗b∗ space is perceptually uniform. It consists
of a luminosity L∗ or brightness layer, chromaticity layer
a∗ indicating where color falls along the red-green axis, and
chromaticity layer b∗ indicating where the color falls along
the blue-yellow axis.

At the beginning of marker detection phase, the user
selects in one frame a point for each marker. Then, using
region growing algorithm, we average out the color infor-
mation of each marker in the a∗b∗ space. This step permits
us to calibrate the system, dealing with variation in room
environment (e.g. ambient lighting condition), associating
also to each marker a reference value in this space.

Next, in each frame, the color of pixels is detected accord-
ing to the Nearest Neighbour rule by means of computing the
Euclidean distance in the a∗b∗ space between the pixel and
each color marker. Through two experimental thresholds, one
for each color, we can distinguish between different image
colors as well as between markers and background. Notice
that at each frame reference color values in the a∗b∗ space
are updated on the basis of values in the previous frames.

b) Marker Tracking: Tracking algorithm aims at estab-
lishing correspondence between the objects instances across
frames.

We track the red markers separately from the yellow ones
to reduce the ambiguity between the closest marker, i.e., the
couple of markers positioned on the anterior superior iliac

spine and on the femur greater trochanter, as well as those
located on the heel and on the fifth metatarsal bone.

Since measurements obtained from video contain noise,
object motion can suffer from random perturbation. In these
cases, statistical correspondence methods are best suited to
solve the tracking problem [18]. Among them, we have
applied the Kalman Filter (KF), which is an optimal recursive
stochastic method providing optimal estimates minimising
the mean of squared errors. It uses the state space ap-
proach to model the object properties, where the system
state consists of markers position and velocity in the frame.
KF takes into account the measurements as well as model
uncertainties during object state estimation [19]. Indeed, new
measurements, consisting of marker positions obtained by the
detection mechanism presented in the previous paragraph, are
incorporated when a new frame is processed.

The discrete equations of the state model are:(
x[k + 1] = Ad x[k] +Nd[k]

y[k] = C x[k] + σo No[k]
(1)

where x is the state vector, Ad is the matrix relating the
system state x[k] at the discrete time k to the state x[k+ 1]
at the successive step k + 1, Nd[k] is a sequence modelling
the process noise, y[k] is the measurement vector, C is the
matrix relating the sistem state x[k] to the measurements
y[k], σo is the standard deviation of the measurement noise
No[k].

The equations for the Kalman filter fall into two groups:
time update (or prediction) equations and measurement up-
date (or correction) equations. The former project forward
(in time) the current state and error covariance estimates to
obtain the a priori estimates for the next time step. The latter
incorporate a new measurement into the a priori estimate to
obtain an improved a posteriori estimate.

The prediction equations are:

x̂[k + 1 | k] = Ad x̂[k] (2)

P [k + 1 | k] = Ad P [k]AT
d + ψs (3)

where x̂[k + 1 | k] represents the prediction of the estimate
state at the step k + 1 when the measurement data at step
k have been incorporated, x̂[k] is the estimate of the state
at the time step k, P [k + 1 | k] is the covariance matrix of
the prediction’s error, P [k] is the covariance matrix of the
estimate’s error, ψs is the covarince matrix of the process
noise Nd[k]

The correction equations updating the predicted estimates
upon the incorporation of new y[k + 1] measurements are
given by:

K[k + 1] = P [k + 1 | k]CT (C P [k + 1 | k]CT + σ2
o I)

−1 (4)

x̂[k + 1] = Ad x̂[k] +K[k + 1] (y[k + 1]− C Ad x̂[k]) (5)

P [k + 1] = (I −K[k + 1]C)P [k + 1 | k] (6)

where σ2
o is the measurement noise variance, K is the gain

minimising the a posteriori error covariance equation P [k+
1], and I is the identity matrix.

According to previous equations, new marker position
measurements are used to correct the position estimated
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by the filter. Hence, given the set of measurements and
the set of estimates we need a correspondence criterion
between them to introduce the new measurement data in the
correction equations. To this end, the straightforward method
consists of using the Nearest Neighbour approach based on
Euclidean metric. However, if the markers are close to each
others, the correspondence may be incorrect, failing the filter
convergence. Further to set-up configurations that reduces
correspondence ambiguity, e.g. markers of different colors
on near anatomical landmarks, we applied the Mahalanobis
distance as correspondence metric between measurements
and estimates. It is given by:

D =
p

(y − x̂)TS−1(y − x̂) (7)

where y is a measurement, x̂ is the marker prediction and S
is the covariance matrix. With reference to previous notation,
D can be computed as:

D = ((yi[k + 1]− Cm x̂[k + 1 | k])T ·
·(Cm P [k + 1 | k]CT

m + σ2
o I)

−1 ·
·(yi[k + 1]− Cm))

1
2 (8)

where Cm is a suitable matrix that permits to select one of
markers from the vector of the predictions x̂[k+1 | k], which
contains both the position and the velocity of the markers.
The quantity Cm P [k+ 1 | k]CT

m respresents the covariance
of the prediction’s error of the m-th marker, whereas σ2

o I is
the covariance of the measurement error.

Finally, the prediction x̂[k + 1 | k] is associated to the
marker minimising the distance with the measurement yi[k+
1].

The last issue that should be addressed to solve our track-
ing problem deals with occlusion. Indeed, when a predicted
position does not get any correspondence in the measure-
ments set, it is assumed that the marker has been occluded. In
this case, typical approach consists in including the predicted
position in the measurement vector. However such a solution
introduces an high uncertainty since the predicted value has
not been corrected by any measurements. To tackle this point,
we replace the missing marker measurement with the linear
interpolation between the last available estimate and the
next available marker.Consider a stream where an occlusion
occurs at time k and continues for n frames, so that the
last available estimate is at time k − 1, whereas the first
available measurement occurs at time k + n. According to
linear interpolation, the position of the of occluded marker
at time k is given by

x[k] = x[k−1] +
xk+n − xk−1

n+ 1
(9)

B. Kinematic analysis

The bi-dimensional kinematic analysis is performed cal-
culating the values of hip, knee and ankle joint angles in the
sagittal plane during the gait cycle. On this plane, the subjects
leg is modeled as an open kinematic chain, composed by
three joints and four links, as shown in fig. 1 (left).

The links are represented as rigid bodies which connect
two subsequent markers and, with reference to markers
positions reported in section II, are defined as follows:
• the first link connects markers (i) and (ii);
• the second one connects markers (ii) and (iii);
• the third link connects markers (iii) and (iv);
• the last one connects markers (iv) and (v);

Fig. 1. A schematic representation of the open kinematic chain which
models the subject’s leg (left) and the definition of joint angles (right).

The joint angles are calculated as the angles described by
two following links. In particular:
• hip angle is defined as the angle between link 1 and

link 2;
• knee angle is defined as the angle between link 2 and

link 3;
• ankle angle is defined as the angle between link 3 and

link 4;
A schematic representation of links and angles, as defined

in this paper, is reported in fig. 1 (right).

III. RESULTS

The device presented in this paper has been validated with
a healthy subject. Since the system has been designed to
be used with both neurological and orthopedic patients, the
subject has been asked to walk on two standard crutches
(see fig. 2). In fact the crutches, which are commonly used
by patients during the clinical analysis of the gait, can
often cause occlusions of the markers during the trials. The
presented experiment has been performed to simulate the
normal operative conditions in which the device will be used,
and to test the capability of the system in reconstructing the
positions of the markers even when several occlusions occur
during a typical evaluation session.

Figure 2 shows the results of the application of KF in
conjunction with the methods handling occlusions. Left panel
shows the measured marker positions during the stream,
whereas the right panel shows the trajectories computed
applying the KF with linear interpolation.

Using the positions of the markers estimated by the KF, a
kinematic analysis of gait cycle in the sagittal plane can be
performed. Figure 3 shows the stick diagram of the subject’s
leg during a single gait cycle. In fig. 4 the time course of
the hip, knee and ankle joint angles calculated for the same
gait cycle are reported. In fig. 4 the time is normalized with
respect to the step period (from the beginning of a stance
phase to the end of the swing phase).

IV. CONCLUSIONS

This paper presented a low-cost, portable tool for bi-
dimensional gait analysis, which is purposively conceived
to be used in clinical practice. In fact, the system has been
designed to be simple to use and easy to setup; it requires few
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Occlusions 

Fig. 2. Example of markers tracking.

!!"" !#" "
"

#"

!""

$%&'()

*
%&
'
(
)

Fig. 3. Stick diagram of the subject’s leg during a single gait cycle.
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Fig. 4. Hip (blue), knee (green) and ankle (red) joint angles during a single
gait cycle. The time is normalized with respect to the step period.

minutes for acquisition of clinical data and provides some
kinematic indices of clinical interest. The developed software
first executes an automatic tracking of the markers (that
are applied on five anatomical landmarks of the subject’s
leg) using Kalman filter in conjunction with Mahalanobis
distance for estimates correction and interpolation to cope
with occlusions. Then it calculates the values of hip, knee
and ankle joint angles in the sagittal plane during the gait
cycle. The proposed device has been tested on one healthy
subject walking on two standard crutches. Preliminary results
showed that the system is able to reconstruct marker position
and leg kinematics even if several occlusions occur.
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