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Abstract— Mass parameters of the body segments are manda-
tory to study motion dynamics. No systematic method to
estimate them has been proposed so far. Rather, parameters
are scaled from generic tables or estimated with methods
inappropriate for in-patient care. Based on our previous works,
we propose a real-time software that allows to estimate the
whole-body segment parameters, and to visualize the progresses
of the completion of the identification. The visualization is
used as a feedback to optimize the excitation and thus the

identification results. The method is experimentally tested.

I. INTRODUCTION

When studying human motions dynamics the appropriate

knowledge of segment parameters (SP) is mandatory. Such

is the case in orthopedics, biomechanics, neurology. With an

accurate knowledge of the subject specific segment parameter

is is possible to refine diagnosis and personalize health-care.

The trajectory of the whole-body center of mass (COM) is

also often use in gait studies; the computation of the SP:

inertia and the position of the COM of each link of the body,

is a key-step in gait analysis and to monitor the SP variations

due to disease, hospitalization, rehabilitation or training [1].

Systems to estimate in-vivo the position of the whole-body

COM have been recently released [2], [3]. Nevertheless, the

inertias are usually not estimated in-vivo, by lack of accurate

methodology, and are computed by interpolations of data

[4]. These data is obtained by photogrammetry [5] or by 3D

imaging (CT-scan or MRI) and 3D modeling interpolations

[6]. Discrepancies in body landmarks and in models [7] as

well as the profusion of references make an adequate choice

difficult. In addition, proper interpolations of the available

data require massive geometric measurements. Finally, it is

shown in [8] that errors in the body-segment mass-parameter

affect significantly the analysis results. Consequently, there is

a urge to estimate in-vivo and accurately the SP of the human

body. Based on our previous works [9], we present here a

methodology for real-time (RT) estimation of the SP from

motion and contact force [10]. A graphic interface is used to

generate persistent exciting trajectories from visual feedback.

This method allows in-vivo subject-specific identification of

the SP with a fast, safe and robust environment. It makes

use of both the identification of the base-parameters and

an interpolation from data extracted from the data-base of

human body.
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II. IDENTIFICATION FROM CONTACT FORCES AND

MOTION DATA

A. Identification model of legged systems

The original identification method of the base parameters

has been described in our previous work [9]. We use this

method to obtain the minimal identification for the human

body given respectively by Eq. 1 and Eq. 2.

Y Oφ =

Nc∑

k=1

JT
OkF ext

k (1)

φB = Zφ (2)

where:

• Nc is the number of contact with the environment,

• F ext
k ∈ R6 is the vector of external forces exerted to

the humanoid at contact k,

• JOk ∈ R6×6 is the basic Jacobian matrices of the

position at contact k and of the orientation of the contact

link with respect to q0 and qc, which are used to map

F ext
k to the vector of generalized forces.

• φ ∈ R10n is the vector of segment parameters (SP).

• Y O ∈ R6×10n is the regressor for the base-link, a func-

tion matrix of generalized coordinates q0 of the base-

link, the joint angles qc, and their derivatives q̇0, q̇c,

q̈0, q̈c. Y O ∈ R6×10n is the regressor corresponding

in the six equations of motion of the base-link.

• Z ∈ RNB×10n is the composition matrix of base

parameters [11]. Y B ∈ RNJ×NB is called the regressor

for the base parameters and is of full-rank.

B. Estimation of whole-body SP

Identification using Eq. 1 gives only the base parameters

φB . They φB are the necessary and sufficient information

to compute the equations of motion. However, they are often

too complicated to be comprehended straightforwardly with

physiological meaning. The standard SP φ are more com-

prehensible φB as they are the straightforward expression

of the mass and moment of inertia. We propose to estimate

the SP after the identification of the base parameters φ̂B ,

by extrapolating literature data or data-base. The estimated

standard parameters meet the base-parameters without dis-

tortion. For the linear equation (2), the general form of the

least-squares solution for a rank-deficient regressor is given

by [12]:

φ = Z#φB + (E − Z#Z)z (3)

where z ∈ R10n is an arbitrary vector, and E is the identity

matrix. When using the identified base parameters φ̂B , the

main problem resides in determining the vector z projected
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to the null space of the composition matrix Z. We choose

the vector z = φref , where φref is the information found

in the data-base for the standard parameters or reference

standard parameters, and finally the subject-specific standard

parameters φ̂ can be obtained:

φ̂ = Z#φ̂B + (E − Z#Z)φref

= φref + Z#(φ̂B − φB
ref ) (4)

Where, φB
ref = Zφ

ref
. Eq. 4 satisfies Eq. 2. Eq. 4 also

implies that φ̂ minimizes ||φ−φref ||, which means the error

of the reference standard parameters φref .

III. RT VISUALIZATION OF THE RESULTS

A. Outline

Each step is of the identification routine is detailed in the

following subsections. Motions are recorded every 5[ms] by

a commercial optical motion capture: 10 cameras (Motion

Analysis), 35 reflective markers, and the contact forces are

measured every 1[ms] by two force-plates (Kistler). The

human body is modeled by a rigid body model with 34

degrees of freedom [9]. The motion-data and the force-data

are synchronized. The identification process is as follows

(Fig. 1):(1) the geometric model of human is defined, mea-

sure the geometric parameters of the model from motion

capture, and estimate the prior standard inertial parameters

from geometric parameters and data-base of human body.

(2) From the motion capture and force-plates, we identify

the base parameters and the standard parameters using the

RT method. (3) Using colored presentation to specify the

links yet not to be identified, we can improve the quality of

identification results.

Visualization

Motion Feedback

Human Body Data-base

Geometric parameters

Calibration data

Whole body SP

estimation

SP Base
parameters

Prior
data

Computations

Measurements

Fig. 1. Conceptual diagram of the proposed approach of RT identification
and visualization

B. Estimation of the geometric model and prior estimation

of standard inertial parameters

Geometric parameters are by nature measurable directly.

Usually they are measured manually, here we propose to use

an automatic method making use of the defined positions

of the optical markers. They are located at the defined

anatomical points to insure the accuracy when computing

the inverse kinematics, thus we can automatically compute

the geometric parameters of each link by calculating their

relative position. The standard inertial parameters (reference)

are then estimated from the obtained geometric model, in

order to build the model shape. In this paper, we apply

the method described in [13] based on the use of the data-

base of the human body available from [14], to estimate the

standard inertial parameters. The data-base consists in the

49 diagnostic measurements and the total body mass of 308

Japanese. The prior estimation of the standard parameters

is performed as follows: (1) We measure some of the 49

diagnostic measurement and the total mass (from marker

positions and force-plates data) to use as the input of the

estimation routine, and then we compute the other items

using a linear regression. (2) The geometric shape of the

human body is modeled. In this model, each link of the

human body is approximated by simple primitive shapes.

For example, oval sphere, truncated cone, and boxes. (3) The

size and volume of each primitive is computed from the 49

measurement items, and the inertial parameters are obtained,

assuming that the density of each link is uniform.

C. On-line identification of the base parameters

From the inverse kinematics computations of marker po-

sitions, the generalized coordinates and their derivatives are

obtained, the regressor is calculated RT. The total external

force exerted to the frame of the base-link is calculated

from the force-plates data. On-line least squares algorithm

is implemented. The forces and moments in Eq. 1 have

different units, and different measurement accuracies. To

avoid discrepancies the weighted least squares method is

used. In addition, some parameters may be time-varying, for

example when a human handles or releases an object during

the measurements, to identify appropriately the parameters

an exponential forgetting coefficient λn is used. The above

features are implemented as follow: At times t = [1 · · ·n],
the estimated parameters φB,n at t = n is computed from

φB,n−1 at t = n − 1 as follow.

φ̂B,n = λnφ̂B,n−1 + Kn(F n − Y OB,nφ̂B,n−1) (5)

Where,

• λn(0 ≤ λn ≤ 1) is the time-varying forgetting factor.

• Y OB,n and F n are the regressor and the external force

at the time t = n.

• Kn ∈ RNB×NB is the gain matrix as follow:

Kn = P n−1Y OB,n
T V n

−1 (6)

• V n ∈ R6×6 is defined as follow:

V n = λnΣn + Y w,tP n−1Y w,t
T (7)

• P n ∈ RNB×NB is defined by defined by:

P n =

n∑

n=i

(Y OB,i
T
ΣiY OB,i)

−1 (8)
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And the on-line inverse matrix calculation is given by:

P n =
1

λn

(P n−1 −P n−1Y OB,n
T V n

−1Y OB,nP n−1)

(9)

• Σn ∈ R6×6 is the weighted matrix.

The weighted matrix Σn is chosen as the covariance

matrix for the disturbance of F . We consider that the 6 axis

elements of F are independent and thus Σn is diagonal.

The i-th diagonal element σ2
ii,n(1 ≤ i ≤ 6) is the variance

of the estimated error of each component of F . σii,n can be

calculated using Ai,n ∈ RNB×NB , bi,n ∈ RNB , ci,n ∈ R,

dn ∈ R as follow, where fi,n ∈ R, yi,n ∈ R1×NB (1 ≤ i ≤
6) are the each component of respectively F n and Y OB,n.

σi,n
2 =

1

dn

(φB,n−1
T Ai,nφB,n−1 − 2φB,n

T bi,n + ci,n) (10)

Ai,n = yi,n
T yi,n + λ2

nAi,n−1 (11)

bi,n = fi,nyi,n
T + λ2

nbi,n−1 (12)

ci,n = fi,n
2 + λ2

nci,n−1 (13)

dn = 1 + λndn−1 (14)

From Eq. 5, Eq. 9, and Eq. 10 - (14), we can compute W n,

P n, and φ̂B,n every time, and also obtain φ̂n from Eq. 4.

The initial value for P 0, φ̂B0 and φ̂0 can be chosen as a-

priori knowledge. If they are unknown, we choose φ̂B0 = 0,

φ̂0 = 0 and P 0 = γE. Similarly, Ai,0, bi,0, ci,0, di,0 are

chosen as zeros without a-priori data. A large value of γ(>
0) leads to a fast convergence, nevertheless P n becomes

unstable with lack of exciting motion data. The forgetting

factor λn is often chosen with a constant value from 0.995

to 1. If the parameters are constant (no object carried) λ = 1
is chosen (no forgetting); if the parameters are to change

(when handling and releasing objects) we chose λ < 1.

D. Visualization of Persistent Excitation Trajectory

It is important to sample the identification model along

a motion that excites the system dynamics to be estimated

to obtain accurate SP estimates. Such motions are called

Persistent Exciting Trajectories [15]. However, a large num-

ber of DOF and time-varying contact situation complicate

the definition of persistent exciting trajectories [16]. The RT

interface is used for the identification as well as adjustment of

the persistent exciting movements. During the measurement,

we display the model using a colored representation for

the identified link parameters and the not yet identified

link parameters. Intuitively links need to be excited are

recognized. The examinee can generate the adequate per-

sistent exciting trajectories. The colors are chosen according

to the relative standard deviation calculated for each base

parameter. [15], [17] The covariance matrix Cn ∈ RNB×NB

of the estimation error of φ̂B,n are computed as follow:

Cn = E((φB − φ̂B,n)(φB − φ̂B,n)T ) = P n (15)

where E is the expectation operator. Eq. 5, Eq. 6, and Eq. 9

of the on-line least squares algorithm are similar to equations

of a Kalman filter without the system noise, and P n is

equivalent to the covariance matrix of Cn. cn,(i,i) is the

diagonal elements of Cn, and the relative standard deviation

σφj% is thus computed as follow:

σφj ,n% = 100

√
cn,(i,i)

φ̂Bj,n

(16)

A parameter with a relative standard deviation σφj% lower

than a specified threshold is well identified. However for

parameters with small values, they may be well identified

although σφj% is large. The results are visualized using a

3D representation of the human as defined in section III-B.

Each link color changes according to a simple rule: nBj is

the number of the base parameters of the link j, nBj,G is the

number of parameters that σφj% is lower than 10[%], nBj,B

is the number of parameters that σφj% is not lower than

10[%] but small parameters(< 0.02), and nBj,R = nBj −
nBj,G−nBj,B . Then rgb values of each link are chosen as a

ratio of nBj,R, nBj,G, and nBj,B . Starting from red for non

identified parameters to green for fully identified parameters;

and cyan for small parameters Fig. 2.

IV. EXPERIMENTS

We record three motions using the RT visualization inter-

face. During this phase the motions are free and only adjusted

to provided the identification of the parameters based on the

color changes. The initial conditions for RT identification are

λn = 1.0, γ = 0.001, and other parameters are zeros.

A. Identification of base parameters

Randomly chosen motions of the whole body lead to

regressor of high condition number about 500. Using the

combination of several motions from a gymnastic TV pro-

gram has lead to condition number about 40 [16]. Using

the interface leads to obtain condition numbers of about 30.

And thus to enhance the excitation properties of the recorded

motions by visual feedback and the quality of the estimation.

More particularly for the extremities and the head.

B. Identification of standard parameters

Table I gives some results of the estimation of the standard

parameters, and initial value of literature data for the mass

M [kg], the center of mass Ci[kg-m], and the inertias Jij [kg-

m2] of 6 links. (L1:lower trunk, L2:upper trunk, L3:right

foot, L4:right hand, L5:head, L6: right upper leg) The

estimated masses are in the range of the prior parameters, and

the inertias of L2, L3, L4 also show good correlations and

are meaningful. However, the center of mass of L1 and L5,

and the inertia around the Z-axis of L1,L5 and L6 have failed

to be estimated, i.e. the center of mass is located outside

of the link and the principal moment of inertia around Z-

axis is negative. This can be explained as follow: some base

parameters of L1 and L6 have a standard deviation higher

than 15%. In addition, the prior standard parameters are not

accurate and the data-base is not complete, which affects the

estimated standard parameters. Though the base parameters

are well identified the standard parameters reconstruction

from the data base needs to be improved, more particularly
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Fig. 2. RT identification of human inertial parameters

TABLE I

ESTIMATED STANDARD INERTIAL PARAMETERS AND LITERATURE

PARAMETERS (L) OF SIX LINKS

Link L1 L2 L3 L4 L5 L6

M 2.79 19.38 1.94 0.43 3.91 6.01

ML 2.51 19.08 2.50 0.48 4.03 5.73

Cx -0.04 -0.03 -0.03 -0.01 -0.05 0.08
CxL 0.00 0.00 0.04 0.10 0.00 0.20
Cy 0.01 -0.01 0.02 -0.01 -0.12 -0.02

CyL 0.00 0.01 0.10 0.00 0.00 -0.02
Cz 0.01 0.21 -0.03 -0.06 0.40 0.02

CzL 0.03 0.23 0.00 0.00 0.16 0.00

Jxx 0.46 0.62 0.02 0.01 0.32 0.04
JxxL 0.02 1.38 0.04 0.00 0.12 0.01

Jyy 0.03 0.71 0.03 0.01 0.01 -0.08
JyyL 0.01 1.33 0.01 0.01 0.12 0.08

Jzz -0.01 0.01 0.07 0.01 -0.09 -0.15
JzzL 0.02 0.14 0.05 0.01 0.01 0.09

the accuracy of the presumption of prior information, and

some constraints on the parameters should be added.

V. CONCLUSION

In this paper we have proposed an identification method

for the human body segment parameters. We have shown that

is possible to estimate all the standard inertial parameters.

The proposed method makes use of 1. the identification

of the base parameters and 2. the prior estimated param-

eters extracted from the data-base of human body. The

estimated parameters meet the identification results without

distortion, and minimize the error of the prior information

from data-base. The proposed approach of RT identification

and visualization of results during measurement allows to

generate optimal persistent exciting trajectories. However

some of the obtained results have shown physically incorrect

estimation of the standard parameters. To fix this issue

the method requires a more complete data-base for a-priori

parameters and to dynamically constrain the center of mass

and the principal moment of inertia. Possible applications

of the method include interfaces for health monitoring and

rehabilitation monitoring, as well as tools for gait analysis

and orthopedics.
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