
  

 

Abstract—Previously, we described a time-varying, parallel-

cascade system identification algorithm that estimates intrinsic 

and reflex stiffness dynamics.  It uses an iterative technique, in 

conjunction with established, time-varying, identification 

methods, to estimate the two pathways from ensembles of input 

and output realizations having the same time-varying behavior. 

This paper presents the results of a study that systematically 

evaluated the performance of the algorithm. Simulations were 

used to determine the algorithm’s ability to track rapid changes 

in dynamic stiffness, and quantify its performance limits.  

There was close agreement between the simulated and 

estimated joint stiffness demonstrating that the algorithm 

estimates stiffness correctly even when it changes rapidly.  

However, the algorithm’s ability to identify the reflex pathway 

was shown to depend on the relative contributions of the 

intrinsic and reflex pathways to the overall torque.  As the 

intrinsic contribution to the output grew it became increasingly 

difficult to identify the reflex pathway accurately.  The quality 

of the reflex identification greatly improved as the number of 

realizations in the data ensembles increased. More realizations 

were needed as the signal-to-noise ratio decreased and the 

relative contribution of the reflex pathway decreased. For good 

results, under typical time-varying experimental conditions, 

between 500 and 800 realizations are required. 

I. INTRODUCTION 

Dynamic joint stiffness is defined as the relation between 

angular joint position and the torque acting about it.  Joint 

stiffness can be separated into two components: an intrinsic 

component that arises from the mechanical properties of the 

joint, active muscle, and passive tissue; and a reflex 

component due to changes in muscle activation in response 

to the stretch reflex.  Joint stiffness plays an important role 

in the control of movement and posture; it determines the 

amount of force needed to achieve the desired final position 

of the limb and the amount of movement that will result 

from an external perturbation.  However, the exact role of 

the two stiffness components in the control of movement is 

still uncertain.   
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Stationary, time-invariant studies of dynamic joint 

stiffness at the ankle have shown that both intrinsic and 

reflex stiffness vary greatly with ankle position and the level 

of voluntary torque [1].  Consequently, joint stiffness will 

change rapidly during movement and so cannot be measured 

using the time-invariant identification methods used under 

stationary conditions.  To address this, we have developed a 

time-varying, parallel-cascade (TVPC) identification 

algorithm that uses ensemble methods to separate the 

intrinsic and reflex components of stiffness during time-

varying conditions [2-4].  

This paper presents the results of a systematic simulation 

study carried out to evaluate the accuracy with which the 

algorithm estimates rapid changes in intrinsic and reflex 

stiffness, and to explore the factors influencing its 

performance in the presence of noise. 

II. IDENTIFICATION ALGORITHM 

Previous studies have shown that dynamic ankle stiffness 

is described well by the model shown in Figure 1 [5].  The 

intrinsic pathway relates position to torque by a linear 

dynamic system with the transfer function , 

where I, B, and K are inertial, viscous, and elastic 

parameters, respectively. The reflex pathway relates velocity 

to torque through a delay followed by a Hammerstein 

system, composed of a static non-linearity, similar to a half-

wave rectifier, and a linear subsystem, modeled by a 2
nd

 or 

3
rd

 order low-pass filter.   

The time-varying (TV) identification algorithm uses an 

ensemble method that estimates the dynamics from multiple 

realizations of input/output pairs having the same TV 

behavior.  Figure 2 shows a number of input and output 

realizations from such an ensemble. Since the system may 

be different at each time, the identification is achieved using 
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Fig. 1. Block diagram of the time-varying parallel-cascade model of 
ankle stiffness.  The linear systems depend on both time, t, and lag, τ.  

The static non-linearity is a function of time and velocity.  N represents 

the realization number. 
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estimates computed across the ensemble, rather than along 

time.  This generates a different IRF for every time point, 

which is dependent on time, t, and lags, τ. The TVPC 

identification algorithm is described in detail in [4], but is 

reviewed briefly.  It uses an iterative procedure to estimate 

the two parallel pathways as follows: 

1. A first estimate of the TV intrinsic stiffness, , is 

obtained at each time point by estimating the linear 

impulse response function (IRF) between position, , 

and total output torque, , using an algorithm that 

relates ensembles of input-output cross-correlations 

and input autocorrelations. Fixing the length of the 

intrinsic IRFs to less than the reflex delay eliminates 

any correlation between reflex torque and the input. 

The intrinsic torque, , is predicted by convolving 

the input position with the TV . 

2.  The ensemble of intrinsic residuals, , is calculated 

as   and is used as the output for  

reflex stiffness identification.  

3. The non-linearity,  and the linear subsystem, 

 of the Hammerstein system are estimated from 

the velocity and  using an iterative process.   

is estimated first using a TV correlation method.   

is then fixed and a polynomial is fit using regression 

analysis to estimate .  Then, the polynomial is 

fixed and a new estimate of  is generated.  This 

process repeats until the sum of squared errors fails to 

decrease.  Hammerstein system estimates are generated 

for each sample time. 

4. The estimated TV Hammerstein system is used to 

predict the reflex torque, . 

5.  and are summed to estimate the total output 

torque, . 

6. The percent variance accounted for (%VAF) is 

calculated between  and  to quantify the quality 

of the identification.  The %VAF between an observed 

signal, , and its estimate  is defined as:  

 

7. The procedure continues from step 1 by calculating a 

new estimate of intrinsic stiffness using reflex residuals 

as the output.   

8. The iteration continues until the %VAF fails to 

increase. 

Following the identification, intrinsic stiffness is 

converted to compliance, , since this is more readily 

interpreted.   

III. SIMULATION STUDY 

A. Methods 

Time-varying dynamic ankle stiffness was simulated with 

Simulink (The Mathworks inc.) using the model shown in 

Figure 3.  Intrinsic stiffness was represented by inertial, I, 

viscous, B, and elastic, K, parameters.  Reflex stiffness was 

modeled as a Hammerstein system consisting of a half-wave 

rectifier followed by a 2
nd

-order low-pass filter with 

parameters gain, G, damping, , and natural frequency, n.  

The input was a 0.03 rad pseudo-random binary sequence 

(PRBS) with a 150ms switching rate, filtered with a 2
nd

 

order, low-pass Butterworth filter with a 50Hz cutoff. 

B. Identification of rapid, time-varying changes 

The goal of the first simulation study was to confirm that 

the TVPC algorithm could identify rapid, time-varying 

Fig. 2. Example input position (left) and output torque (right) ensembles. 

Fig. 4.  Parametric fit results.  The values of parameters used in the 

simulations are in red (dotted), and the values obtained by the parametric 
fits are in blue (solid).   

Fig. 3.  Simulation model  for joint stiffness.  The values of  B, K, and G  

varied with time.  All other parameters were held constant.  
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changes. Therefore, the intrinsic and reflex parameters were 

changed with time as shown in Figure 4. G changed stepwise 

at 3 times, while, K and B changed according to a ramp 

waveform. There was no additive noise. The simulation was 

run 800 times using a 1 kHz sampling rate, to generate the 

input and output ensembles. Note that we will use the term 

simulation to refer to the set of simulations used to generate 

the input and output ensembles.  Individual input-output 

pairs will be referred to as realizations. 

The time-varying simulation data was decimated to 200 

Hz prior to applying the TVPC algorithm.  Figure 5 shows 

the resulting stiffness and compliance estimates.  The time-

varying changes in stiffness dynamics are evident in , 

and .  The %VAF between simulated torques and the 

estimates was high; the time average of the total, intrinsic, 

and reflex %VAFs, was 98.2%, 98.3%, and 94.1% 

respectively. 

To determine how well the estimated system dynamics 

corresponded to the models simulated, parametric models   

were fit to the estimated TV IRFs. These fit the IRF 

estimates very well; the average %VAF between the 

parametric fits and the IRF estimates was 96.1% for the 

intrinsic and 99.7% for the reflex pathway. Moreover, as 

Figure 4 shows, the values of the parameters estimated for 

G, K, and B closely followed the simulated values. This 

demonstrates that the TVPC identification algorithm 

accurately tracks rapid TV behavior with no a priori 

information about its behavior. 

C. Signal-to-Noise Ratio 

The goal of the second simulation study was to define the 

performance limits of the algorithm.  Specifically, we 

wanted to understand the effect the signal-to-noise ratio 

(SNR) had on the quality of the identification, and what 

conditions must be met for the identification to succeed.  

Initial investigation of the TVPC algorithm showed that the 

quality of the identification was not the same at each point of 

the TV behavior.  For this reason, time-invariant simulations 

were used to quantify the precise system conditions required 

for successful identification.  

Three parameters were varied between simulations: the 

noise power, the reflex gain, and the number of realizations 

in the data ensemble. Three values of reflex gain were used 

to explore how the relative size of the reflex influenced the 

quality of identification.  For each value of reflex gain, the 

power of Gaussian white noise, added at the output, was 

varied to evaluate SNR effects.   

The data ensembles, composed of 500 realizations, were 

decimated to 200 Hz prior to analysis.  Each simulation was 

characterized by its SNR, and the relative contributions of 

intrinsic and reflex stiffness to the total output torque, 

quantified by the relation: 

 

The quality of the identification was evaluated by 

computing the %VAF between the noise-free, simulated 

torques and the predicted torques. Figure 6 shows the %VAF 

between the simulated and predicted total torque (A), 

intrinsic torque (B), and reflex torque (C) for different SNRs 

and intrinsic/reflex ratios: 1, 2, and 5. Each point represents 

the results of a single simulation. If the %VAF fell below 

zero, the identification was considered to have failed at those 

points, and they were set to zero. 

Figure 6 shows that the total and intrinsic torques are well 

estimated for all intrinsic/reflex ratios, with %VAF above 

80%; the quality of the identification drops only slightly as 

the SNR decreases.  However, it is clear that the 

intrinsic/reflex ratio had a significant impact on how much 

noise the reflex identification could tolerate.  For the 

intrinsic/reflex ratio of 5, the reflex identification failed for 

SNRs less than 10 dB, while it did not for the smaller ratios. 

The reflex estimation degraded at higher SNRs for larger 

ratios.  

In light of the previous result, a new metric was a 

calculated: the effective reflex SNR, defined as the ratio of 

the reflex torque power and the noise power.  Figure 7, 

shows the %VAF between the simulated and predicted 

reflex torque as a function of effective reflex SNR, for three 

intrinsic/reflex ratios.  When plotted against the effective 

reflex SNR, the quality of the reflex estimates exhibited the 

same degradation behavior; beginning to fall off rapidly at 

an effective reflex SNR of 0dB.  

Fig. 5.  Results of TVPC algorithm. A: . B: . C: . D:  

 

Fig. 6.  Percent VAF between simulated and predicted (A) total, (B) 
intrinsic, and (C) reflex torque as a function of SNR for three 

intrinsic/ reflex ratios. 500 realizations were used in the identification. 

 

Fig. 5.  Results of TVPC algorithm. A: . B: . C: 

. D:  
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D. Number of Realizations 

As more noise was added to system, we expected that 

more realizations would be needed to identify the system. 

Similarly, as more realizations were used in the data 

ensembles, we expected the estimates to improve.  To 

investigate these hypotheses, we first examined how the 

quality of the identification varied with the number of 

realization. A fixed SNR of 10dB and an intrinsic/reflex 

ratio of 2 were used because this is similar to what is 

expected experimentally.  

Figure 8A shows the results of this simulation. The total 

and intrinsic torques were consistently well modeled; 

improving only slightly with the number of realizations. The 

reflex estimates were more sensitive, the %VAF increased 

from about 60% with 400 realizations, to more than 90% 

with 900 realizations.  

In a second simulation study the number of realizations 

and the SNR were varied, to determine the minimum 

number of realizations required to estimate stiffness 

dynamics reliably under various noise conditions.  

Reliability was determined by repeating the simulations 5 

times at the same SNR, with the same sized ensembles.  If 

all identifications were successful the identification was 

considered reliable.  However, if the identification failed for 

one or more of the simulations, the identification was 

deemed unreliable. The intrinsic/reflex ratio was set to 2.   

Figure 8B shows the results. The minimum number of 

realizations needed for reliable identification decreased as 

the SNR increased. Note that although the algorithm requires 

relatively few realizations to perform the identification; 

adding realizations will improve the estimates. 

IV. DISCUSSION AND CONCLUSION 

These simulation studies show that the time-varying, 

parallel-cascade algorithm can identify rapid changes in 

system dynamics. Indeed, even step changes were tracked 

accurately.  This means that there are few limitations on the 

type of movement that can be studied.   

However, one limitation is the size of the intrinsic/reflex 

ratio, which may change during movement. That the reflex 

identification cannot tolerate as much noise when the 

intrinsic component dominates the output is not surprising 

because of the iterative nature of the TVPC algorithm.  The 

intrinsic component is identified first, and its contribution to 

the output torque is removed prior to the reflex 

identification.  However, all the noise is still present during 

reflex identification. Furthermore, since the reflex is smaller 

with larger intrinsic/reflex ratios, the effective SNR for the 

reflex identification is much lower than  for the total torque. 

More realizations will be required to obtain reliable 

identification as the SNR or effective reflex SNR decreases 

and the intrinsic/reflex ratio increases. Under typical 

experimental conditions (total SNR of approximately 10dB 

and intrinsic/reflex ratios between 2 and 4) between 500 and 

800 realizations of the time-varying behavior will be 

necessary. Realizations are typically 3 seconds long, and it 

would, therefore, take 40 minutes to acquire 800 

realizations, which is a reasonable and realistic amount of 

time. With a carefully developed experimental procedure, 

the time-varying, parallel-cascade algorithm will be a useful 

experimental tool.  

This algorithm will be used to study the changes in 

intrinsic and reflex stiffness as the ankle moves or the level 

of voluntary torque is varied.  This will provide further 

insight into the role of reflexes in motor control. 
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Fig. 7. Percent VAF between simulated and predicted reflex torque 

as a function of effective reflex SNR for three intrinsic/ reflex 
ratios. 

Fig 8. (A) %VAF between the simulated and estimated total, intrinsic 
and reflex torques vs. the number of realizations used in the data 

ensembles. (B)The minimum number of realizations required for 

reliable identification vs. SNR. 
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