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Abstract—Patients with chronic heart failure (CHF) with
periodic breathing (PB) and Cheyne–Stokes respiration (CSR)
tend to exhibit higher mortality and poor prognosis. This
study proposes the characterization of respiratory patterns in
CHF patients and healthy subjects using the envelope of the
respiratory flow signal, and autoregressive (AR) time–frequency
analysis. In time-varying respiratory patterns, the statistical
distribution of the AR coefficients, pole locations, and the
spectral parameters that characterize the discriminant band
are evaluated to identify typical breathing patterns. In order
to evaluate the accuracy of this characterization, a feature
selection process followed by linear discriminant analysis is
applied. 26 CHF patients (8 patients with PB pattern and
18 with non-periodic breathing pattern (nPB)) are studied.
The results show an accuracy of 83.9% with the mean of the
main pole magnitude and the mean of the total power, when
classifying CHF patients versus healthy subjects, and 83.3% for
nPB versus healthy subjects. The best result when classifying
CHF patients into PB and nPB was an accuracy of 88.9%,
using the coefficient of variation of the first AR coefficient and
the mean of the total power.

I. INTRODUCTION

Chronic heart failure (CHF) is often related to breathing
abnormalities such as various forms of oscillatory breathing
patterns characterized by rises and falls in ventilation. Peri-
odic breathing (PB) patterns can be classified into ventilation
with apnea, commonly known as Cheyne–Stokes respiration
(CSR), and ventilation without apnea [1], [2]. Some studies
report a 70% PB prevalence in patients with CHF [3]. PB
patterns and CSR predict poor prognosis and have been
associated with higher mortality in patients with CHF [4],
[5]. Different clinical studies have addressed the problem of
defining physiological parameters which characterize such
respiratory patterns [6], [7]. The patterns are also influenced
by wakefulness or sleep, posture, and physiological and
mental activity.
The origin of the PB pattern is still being debated among

researchers. The respiratory modulation frequency appears
to be essential in the understanding of periodic and non-
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periodic breathing patterns in CHF patients. Thus, the en-
velope of the respiratory flow signal is studied in-depth.
Our first studies characterized the relevant frequency band
determined by the modulation frequency peak extracted from
the respiratory flow envelope signal’s power spectrum [8],
[9]. Normal breathing frequency ranges from 12 to 20 breaths
per minute (i.e., 0.20–0.33 Hz), whereas the PB pattern is
characterized by cycle lengths between 25 and 100 s (i.e.,
0.01–0.04 Hz). However, the same patient often presents a
mixture of breathing patterns, ranging from normal breathing
(without cyclic modulation of ventilation) through mild PB
to CSR patterns. Conventional spectral analysis assumes
stationarity in the signal and is therefore unable to identify
pattern changes. An approach which better accounts for such
changes is the time-varying autoregressive (TVAR) model
[10].
The aim of the present work is to characterize and study

dynamic changes in the respiratory flow signal in CHF
patients and healthy subjects. The characterization involves
both spectral and temporal parameters extracted from the
power spectrum of the respiratory flow envelope. The statisti-
cal distributions of these parameters account for the temporal
evolution of the breathing pattern.

II. ANALYZED DATA
The respiratory flow signal was recorded from 35 healthy

volunteers (12 males, 23 females, aged 26±7 years), and
26 patients with CHF (19 males, 7 females, aged 65±9
years) at Santa Creu i Sant Pau Hospital, Barcelona, Spain.
All subjects were studied according to a protocol approved
by the local ethics committee. The respiratory flow signals
were registered using a pneumotachograph, consisting of a
Datex–Ohmeda monitor with a Validyne Model MP45-1-871
Variable-Reluctance Transducer. The signals were recorded
at 250 Hz sampling rate. According to clinical criteria, CHF
patients were classified into two groups: 8 patients with
periodic breathing pattern and 18 patients with non-periodic
breathing pattern. For those with periodic breathing, 3 were
classified as CSR and 5 as without apnea.

III. METHODOLOGY
A. Signal preprocessing
The respiratory flow signal is preprocessed with respect to

artifact reduction. Firstly, outlier samples are removed which
fall below the 1st percentile or above the 99th percentile.
Next, short-duration spikes are removed by employing
an auxiliary filtered signal, obtained as the original flow
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signal downsampled to 25 Hz and filtered by a median
filter of order 11. Thus, samples for which the difference
between the downsampled original signal and the auxiliary
signal exceeds a threshold (here set to half the standard
deviation of the signal) are replaced by the median value
of neighboring samples. An interpolation method based
on AR modeling is proposed in [11] which can handle
missing samples. This method estimates the AR coefficients
from the segment preceding the gap and then use the
coefficients to forward predict the signal across the missing
samples. The same process is repeated for the segment that
follows the gap using instead backward signal extrapolation.
The gap is then replaced by a cross-faded version of the
two extrapolated predictions. Missing samples, defined as
no respiratory activity, were observed and consequently
replaced in two patients. Finally, considering that the
respiratory frequency normally ranges from 0.2 to 0.4 Hz,
the signal is downsampled to 1 Hz.

B. Breathing pattern characterization
The respiratory pattern characterization is based on the

envelope of the respiratory flow signal, using the Hilbert
transformation [12], [9].

1) Envelope extraction: The respiratory flow signal can
be expressed by a deterministic lowpass signal modulated
by a cosine with frequency ωm and phase φ :

s(n) = a(n)cos(ωmn+φ) (1)

where s(n) is the respiratory flow signal and a(n) the
envelope of s(n). The signal s(n) can be expressed in the
frequency domain as:

S(e jω) =
1
2

[
A(e j(ω−ωm−φ))+A(e j(ω+ωm+φ))

]
(2)

where S(e jω) and A(e jω) are the discrete time Fourier
transform of s(n) and a(n), respectively.
It is well-known that the envelope a(n) is obtained by

canceling out the negative frequencies and shifting the right
side spectrum to origin [13]. In order to cancel the left side
spectrum, the following function is defined:

SA(e jω) = S(e jω)+ jH(e jω)S(e jω) = S(e jω)+ jS̄(e jω) (3)

where H(e jω) is the linear time-invariant filter that produces
the Hilbert Transform, denoted s(n), the output of the Hilbert
transform applied to the s(n), that is a 90 shifted version of
s(n). Therefore, sA(n) represents a frequency shifted version
of the envelope, and the positive valued envelope is obtained
without any knowledge of ωm or φ .

sA(n) = a(n)e jωmn (4)

a(n) = |sA(n)| =
√
s2(n)+ s̄2(n). (5)

Since the frequency bandwidth of the flow envelope
a(n) is much lower than the original s(n) signal, it is
down-sampled to 0.1 Hz. Fig. 1 shows as an example of
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Fig. 1. Preprocessed flow signal and its envelope of (a) a CSR patient,
(b) a patient with periodic breathing pattern, (c) a patient with non-periodic
breathing pattern, and (d) a healthy subject.

the preprocessed respiratory flow signal and its envelope for
a patient in each patient group of patients as well as for a
healthy subject.

2) Time-varying spectral estimation: A time-varying AR
algorithm may be used to model the respiratory envelope
signal. Time-varying coefficients are determined through an
adaptive method based on the recursive least squares (RLS)
algorithm. It updates the previously evaluated sample on the
basis of the prediction error, and weights it by means of
a forgetting factor λ ∈ (0,1]. Small values of λ imply high
potential variability of the AR coefficients, while high values
between (0.9–0.99) are usually more relevant in practice. The
forgetting factor that minimize the least square error between
the predicted envelope and the real one is selected from the
recommended λ range [10]. A value of 0.975 is obtained in
average for CHF patients and 0.995 for healthy subjects. The
envelope of the respiratory flow signal is with AR modeling
obtained as:

x(n) = −
p

∑
k=1
ak(n)x(n− k)+ e(n) (6)

where e(n) denotes zero-mean white noise with variance σ2,
ak(n) the AR coefficients, and p the model order.
The selection of model order is a trade-off between the

frequency resolution and the spurious peaks. The optimum
model order is evaluated for each patient according to
Rissanens minimum description length criterion. The mean
of the optimum order of all CHF and healthy subjects (4th
order AR model) is selected as the most appropriate one.
Power spectra are calculated at successive intervals from the
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Fig. 2. Time-varying power spectrum of CHF patients and healthy subjects;
(a) CSR patient, (b) PB patient, (c) nPB patient, (d) healthy subject.

estimated AR coefficients. Fig. 2 displays the time-varying
power spectra of each CHF patient group (PB, nPB and
CSR patient) and a healthy subject. The most striking
feature in these diagrams is the temporal evolution of the
modulation frequency peak.

3) Time-varying parameter extraction: Besides the AR
coefficients and the two complex conjugate pole locations,
various spectral parameters are extracted from the discrim-
inant frequency band (DB), which consist of the frequency
interval (0.02 Hz) centered at the modulation frequency peak.
The whole parameter set would characterize the behavior of
the respiratory pattern each moment. However, to identify the
most frequent pattern presented by each patient and healthy
subject, the statistical distribution is evaluated for each
time-varying parameter. Table 1 summarizes the different
parameters and their statistics: mean (m), standard deviation
(s), interquartile range (i) and coefficient of variation (c).

TABLE I
PARAMETER DESCRIPTION AND STATISTICS

fp; mf p, s f p, i f p, c f p Frequency peak
P; mP, sP, iP, cP Power of DB
S; mS, sS, iS, cS Slope from f p to right DB end
K; mK, sK, iK, cK Kurtosis measure
ai; mai, sai, iai, cai AR coefficients (i= 1, . . . ,4)
ri; mri, sri, iri, cri Poles magnitude (i= 1,2)
phi; mphi, sphi, iphi, cphi Poles phase (i= 1,2)

IV. RESULTS
Linear discriminant analysis is performed between 26

CHF patients and 35 healthy subjects in order to study the
accuracy of the presented pattern characterization (Table 2).
Firstly, CHF patients versus healthy subjects are classified,
secondly nPB patients versus healthy subjects, and finally the
internal CHF patient classification, PB versus nPB. Through
the statistics extracted from each parameter distribution,
a feature selection is applied in order to select the most
discriminant subset using leave-one-out crossvalidation. A
high accuracy is obtained with only one parameter in all
classifications. These results improve slightly with the addi-
tion of a second parameter.

TABLE II
SENSITIVITY (SN), SPECIFICITY (SP), AND TOTAL ACCURACY,

OBTAINED WITH THE BEST PARAMETERS FOR EACH CLASSIFICATION

USING LEAVE-ONE-OUT CROSSVALIDATION.

Classi- Best Sn Sp Accu-
fications Features racy

CHF vs. mr1 74,1% 88,6% 82,3%
Healthy mr1+mP 74,1% 91,4% 83,9%

nPB-CHF mr1 73,7% 82,9% 79,6%
vs.Healthy mr1+mP 79,0% 85,7% 83,3%

PB vs. ca1 75,0% 89,5% 85,2%
nPB (CHF) ca1+mP 75,0% 94,7% 88,9%

In spite of having present the accuracy of the most discrim-
inant parameters, similar results have been observed with the
other parameter’s statistics: mK, cK, cSl, mS, and cP. Figs.
3, 4 and 5 correspond to the classification of CHF patients
versus healthy subjects, nPB patients and healthy subjects
and nPB versus PB, into CHF patients, respectively.
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Fig. 3. ROC curves obtained with mP, mr1, mK, cK, cS and mS,
classifying CHF patients versus healthy subjects.
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Fig. 4. ROC curves obtained with mP, mr1, mK, cK, cS and mS,
classifying nPB patients versus healthy subjects.
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Fig. 5. ROC curves obtained with mP, mr1, mK, cP, cS and mS, classifying
PB versus nPB patients.

V. CONCLUSIONS

In this work, time-varying AR modeling is proposed for
the characterization of respiratory flow signal patterns. The
time-variant AR coefficients, pole localizations, and various
spectral parameters can be used to study pattern’s changes
and classify CHF patients and healthy subjects. The statistic
distribution is evaluated over each parameter to identify the
predominant respiratory pattern. After feature selection, the
percentage of the subjects correctly classified with the mr1
(mean of the main pole magnitude) and the mP (mean of the
DB power) is 83,9% with 74,1% of sensitivity and 91.7%
of specificity when classifying CHF patients versus healthy
subjects, and 83,3%, with 79,0% of sensitivity and 85,7%

of specificity, when classifying nPB patients versus healthy
subjects, instead. The parameters mr1 and the ca1 (coefficient
of variation of the first AR coefficient), selected as the most
discriminant classifying PB and nPB into CHF patients,
result in 88,9% of patients well classified with 75,0% of
sensitivity and 94,7% of specificity. The ROCs validate the
results obtained in all classifications with leave-one-out cross
validation.
As a preliminary study, these results allow considering the

time-varying modulation of flow envelope signal as a promis-
ing tool to characterize the temporal evolution of respiratory
patterns. Further evaluation of the method’s performance
should be done on a larger set of flow signals.
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