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Abstract— This paper proposes a stochastic approach for
representing and analyzing the gradual changes that occur
in human movement during sports training. Human move-
ment primitives are described using Factorial Hidden Markov
Models, and compared using the Kullback-Liebler distance, a
measure of information divergence between two models. This
representation is combined with an automated segmentation
and clustering approach to enable the system to autonomously
extract and group together movement primitives from con-
tinuous observation of human movement data. The proposed
system is tested on a human movement dataset obtained over 4
months during training for a marathon. Experimental results
demonstrate that the system is able to detect gradual changes
in the human movement.

I. INTRODUCTION

Human movement is complex and varied, and undergoes

significant changes over the lifetime of each individual. As

physical capabilities change, the quality of the movement

also changes. These changes could be attributed to the

aging process, disease progression, rehabilitation following

an illness, or movement improvements due to sports and

other training. These changes are multifaceted and interre-

lated, involving changes in movement duration, extension,

and variability. In this paper, we propose an approach for

quantitatively measuring and tracking changes in the quality

of movement over time, based on a stochastic characteriza-

tion of the time series sequence comprising the movement.

The approach is general and automated, and has potential

applications to rehabilitation, diagnosis and sports training.

Recently, there has been increased interest in the use

of Artificial Intelligence and other computational methods

for automatic analysis of human motion [1]. In particular,

gait analysis for gait classification and human identification

through gait has received significant attention in the litera-

ture [2], [3], [4], [5], [6]. Many different techniques have

been proposed, including recognition based on image based

information [4], Principal Components Analysis (PCA) [5],

[6], and Hidden Markov Models [3]. In addition, neural

networks have also been considered for recognition of sports

movements, such as running, squash and rowing [7], [8].

However, most of the approaches proposed to date rely

on manual preparation of the data and an off-line training
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component to train the system for recognition. Therefore,

the motion which can be analyzed must be specified a-priori,

introducing a significant limitation to the system. A second

issue with these systems is that the motions being classified

consist of a discrete set of motions, which are assumed to

be static. However, in applications such as rehabilitation and

sports training, the analyst is interested in monitoring the

change in the motion pattern over time.

In this paper, we investigate the use of Factorial Hidden

Markov Models (HMMs) [9], [10] to represent human move-

ment primitives during sports training. A simple HMM is a

stochastic model capable of describing both the temporal and

spatial variability of a motion. A Factorial HMM (FHMM)

is a similar model incorporating a distributed description

of the state, giving the FHMM an improved capability for

movement representation and discrimination among similar

motions. Motions described as FHMM or HMM models

can be compared based on the Kullback-Liebler distance,

a measure of information divergence between two models.

FHMMs provide improved representation and discriminative

power, and are able to distinguish between similar motions

[10]. We use an automated segmenting and clustering system

[11], [12] for automatic human motion analysis. The pro-

posed system is capable of extracting motion segments from

a continuous on-line demonstration, and grouping together

similar segments. Stochastic segmentation is first used to

segment the continuous demonstration into movement primi-

tives. The proposed system is tested and demonstrated on an

experimental data set consisting of exercise data performed

by a long distance runner over the course of training for a

marathon. Chapter 2 summarizes the motion representation

and abstraction approach, Chapter 3 describes the experi-

mental protocol, Chapter 4 outlines the experimental results,

and Chapter 5 concludes the paper and provides directions

for future work.

II. MOTION REPRESENTATION AND ABSTRACTION

A. Motion Representation

A Hidden Markov Model (HMM) abstracts the modeled

data as stochastic dynamic process. The dynamics of the

process are modeled by a hidden discrete state variable,

which varies according to a stochastic state transition model

A[N, N ], where N is the number of states in the model.

Each state value is associated with a continuous output

distribution model B[N, K], where K is the number of

outputs. Typically, for continuous data, a Gaussian or a

mixture of Gaussians output observation model is used.

HMMs are commonly used for encoding and abstracting

noisy time series data, such as speech [13] and human
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motion patterns [14], [15]. Efficient algorithms have been

developed for model training (the Baum-Welch algorithm),

pattern recognition (the forward algorithm) and hidden state

sequence estimation (the Viterbi algorithm) [13].

A Factorial Hidden Markov Model (FHMM) [9] is a

generalization of the HMM model, where there may be

multiple dynamic processes interacting to generate a single

output. In an FHMM, multiple independent dynamic chains

contribute to the observed output. Each dynamic chain m is

represented by its own state transition model Am[Nm, Nm]
and output model Bm[Nm, K], where M is the number of

dynamic chains, Nm is the number of states in dynamic

chain m, and K is the number of outputs. At each time

step, the outputs from all the dynamic chains are summed,

and output through an expectation function to produce the

observed output. The expectation function is a multivariate

Gaussian function with the chain output as the means, and

a covariance matrix representing the signal noise.

Once a group of either HMM or FHMM models has been

generated, they can be compared by using a probabilistic

distance measure [13]:

D(λ1, λ2) =
1

T
[logP (O(2)|λ1) − logP (O(2)|λ2)] (1)

where λ1, λ2 are two HMM or FHMM models, O(2)

is an observation sequence generated by λ2 and T is the

length of the observation sequence. Since this measure is not

symmetric, the average of the two intra HMM distances is

used to form a symmetric measure. The distance measure is

based on the relative log likelihood that a generated sequence

is generated by one model, as compared to a second model.

It represents a Kullback-Leibler (KL) distance between the

two models. The distance measure quantifies the level of

difficulty in discriminating between two models λ1, λ2.

B. On line segmentation and clustering approach

In the proposed approach [11], [16], the on-line learn-

ing system autonomously segments, clusters and learns the

sequencing of full-body motion primitives from on-line ob-

servation of full body human motions. First, the incoming

continuous time series data is segmented into potential

motion primitive segments. The Kohlmorgen and Lemm

segmentation algorithm [17], [18] is used to perform the

segmentation. This algorithm finds optimal segment points

by defining a Hidden Markov Model over a set of slid-

ing windows defined over recently observed data. A state

transition model is defined such that the cost is lowest to

remain in the same state (i.e, there is an increased cost

to switch states), and an observation function based on the

difference between the current data and the data in the state

window. The optimal sequence of segments is found by

formulating an optimization based on the tradeoff between

data similarity and the cost of switching to a new state. The

optimization problem is solved via an online version of the

Viterbi algorithm.

Once the incoming time series data has been segmented

into potential primitives, each segment is sequentially passed

to the clustering module. In the proposed clustering approach

[19], [20], a hierarchical tree structure is incrementally

formed representing the motions learned by the system.

Each node in the tree represents a motion primitive, which

can be used to recognize a similar motion, and also to

generate a model of the motion. Within each local area of the

motion space, a standard clustering technique [21] is used to

subdivide motion primitives, based on the Kullback-Leibler

distance between motions.

The algorithm initially begins with one group (the root

node). Each time a motion is observed from the teacher, it is

encoded into an FHMM and compared to existing groups via

a tree search algorithm, and placed into the closest group.

Each time a group is modified, local clustering is performed

within the exemplars of the group. If a a cluster with

sufficiently similar data is found, a child group is formed

with this data subset. Therefore the algorithm incrementally

learns and organizes the motion primitive space, based on

the observations received thus far.

III. EXPERIMENTAL PROCEDURE

The data used to validate the proposed approach was

collected during the course of a marathon training program.

The subject, a 33 year old female, undertook the Stanton

marathon training program in preparation for the 2009 Tokyo

Marathon. The training consists of a 16 week program, with

a 5-day a week running schedule which gradually increases

the running distance covered from 20km per week in the

first week, to a maximum of 80km per week in the peak

13th week, before tapering in the final 3 weeks before the

race. A summary of the training program weekly distances is

shown in Table I. Prior to the start of the marathon training,

the subject was running on average 25km per week.

During the course of the training, the subject was recorded

once a week in the motion capture studio. On several

weeks over the course of the training program, recording

sessions were omitted due to the lack of availability of the

subject or the motion capture studio. The recording dates

are indicated in Table I. During each recording session, the

subject performed leg exercises consisting of squats and right

and left leg lunges. Figure 1 shows extracted frames from

video of the recording session. The subject performed 10

repetitions of each exercise during each recording session.

Leg exercises were selected as the ones most likely to show

changes in movement quality over the course of this type of

training.

The motion was recorded in a motion capture studio

using the Motion Analysis motion capture system. A set of

35 markers were attached to the body of the subject.The

marker positions were captured by a set of 10 cameras at a

sampling rate of 5ms. The marker data was then converted

to joint angle data using on-line inverse kinematics [22].

A 34 degree of freedom kinematic model of the human

body was used to obtain the joint angle data. The kinematic

model consists of spherical joints at each shoulder, wrist,

hip, and ankle, rotational joints at each elbow and knee,

a spherical joint representing the upper torso, a spherical
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Fig. 1. Sample Motions from the data set.

TABLE I

TRAINING AND RECORDING SCHEDULE SUMMARY

Week Weekly Dist. [km] Recorded Notes

0 25 Y

1 38 N

2 38 N

3 43 N

4 43 Y

5 46 Y

6 46 N

7 49 N Start of Strength
Training

8 54 Y

9 0 N Subject missed
training week
due to illness

10 50 Y

11 62 Y

12 62 Y

13 67 Y

14 53 Y

15 62 Y

16 67 Y

17 53 Y

18 25 N

joint representing the neck, and a 6DoF free body joint

representing the position and orientation of the body in the

global reference frame. The joint angle data was then used

for subsequent analysis. Since the motions being considered

consisted of leg motions only, only the hip, knee, and ankle

data were used for the analysis.

IV. EXPERIMENTS AND DATA ANALYSIS

The data set was first analyzed to confirm that this type

of motion representation can distinguish between gradual

movement changes that occur during sports training. This

was done by manually clustering the data based on the

recording date and analyzing the distances between clusters

to determine if an observable pattern could be detected.

The recorded data was first segmented using the stochastic

segmentation approach described in Section II. The gener-

ated segments were inspected and manually labeled. The

segments were then grouped together by collection date,

and an FHMM motion model was formed for each session

and motion type. Each FHMM consisted of 2 chains of 8

states each. Distances were then computed between each

session models for each motion type, to determine if FHMM

motion modeling and Kullback-Liebler distances can be used

to detect changes in the movement.

During the early weeks of training, when the training

distance is increasing slowly, no significant differences are

detected. However, in the final 5 weeks of training, when the

training becomes more intense, differences become clearly

observable. Figure 2 shows the distance measures for the

squat lower motion and squat raise motions, starting from

Week 13 of training. For both motions, each week’s model

is becoming increasingly different from the baseline motion

(at Week 13).
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Fig. 2. Kullback-Liebler Distances for the squat motions

Next, the data is analyzed through the automated segmen-

tation and clustering system. Figure 3 shows the resulting

final tree structure, after all the data are sequentially pre-

sented to the algorithm. The node number on each node

indicates the node formation order. Initially, following the

data from the first recording session, the 6 motion types are

easily extracted (nodes 1 to 6). During the first 10 weeks of

data collection, small changes only are observed, such that

the subsequent data is grouped into the existing 6 nodes,

but no further sub-clustering takes place. After week 12,

larger changes in the motion primitives occur, resulting in

new nodes being formed in the database, as child nodes of

the original nodes (nodes 7 - 18). The squat raise motion

undergoes the most change, resulting in three sub-nodes. The

formation of subnodes indicates that new motions observed

after week 12 are significantly more similar to each other
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than to motions observed earlier in the training set, i.e.,

that the motion has undergone larger changes. From a visual

inspection of the motions, it appears that the later motions

are deeper (i.e., further lowering of the torso) than earlier

motions.

SQR
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8 15

LLR

9 14

RLL

11 19

RLR

13 16
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10 18

5 6 1 2 3 4

Fig. 3. Resulting Tree for Automatic Clustering. SQL = Squat Lower,
SQR= Squat Raise, LLL = Left Lunge Lower, LLR = Left Lunge Raise, RLL
= Right Lunge Lower, RLR = Right Lunge Raise. Note that the algorithm
clusters only on the basis of K-L divergience, the node labels are generated
manually for visualization. The node number indicate the order of node
formation.

These results indicate that the proposed fully automated al-

gorithm can be utilized to automatically detect when changes

in the quality of motion are occurring, as indicated by the

formation of new nodes. The proposed approach is flexible as

it requires no a-priori specification of the type or number of

motions to analyze; these are abstracted automatically from

the movement data itself. This feature would be very useful

for a broad range of applications such as rehabilitation or

sports training, where the type of motion used may be very

variable based on the capabilities of the subject and/or the

type of activity being analyzed.

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

This paper proposed an approach for detecting the gradual

change in the quality of motion via the use of stochastic

modeling of joint angle time series data. An automated ap-

proach for extracting and clustering the movement primitives

was also applied. The approach was tested on a human

movement dataset obtained during a four month marathon

training regime for a single subject. Abstracted motions

clustered during the early part of the training can be clearly

differentiated from later motions via the Kullback-Liebler

distance between models, indicating that, with the use of

stochastical modeling, it is possible to automatically detect

incremental changes to human motion. These results indicate

that the approach shows promise for use in automated move-

ment analysis, with potential applications to rehabilitation,

sports training and medical diagnosis.

Future work will focus on validating the proposed method

on a larger number of subjects, as well as implementing

an integrated analysis system by combining the automated

results with input from the analyst.
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[19] D. Kulić, W. Takano, and Y. Nakamura, “Incremental on-line hierar-

chical clustering of whole body motion patterns,” in Proceedings of

the IEEE International Symposium on Robot and Human Interactive

Communication, 2007, pp. 1016–1021.
[20] ——, “Towards lifelong learning and organization of whole body

motion patterns,” in Proceedings of the International Symposium of

Robotics Research, 2007, pp. 113–124.
[21] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”

ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.
[22] K. Yamane and Y. Nakamura, “Natural motion animation through

constraining and deconstraining at will,” IEEE Transactions on Vi-

sualization and Computer Graphics, vol. 9, no. 3, pp. 352–360, 2003.

4014


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

