
  

  

Abstract—A reliable predictor of drowsiness using objective 
measures is desirable for machine and vehicle operations in 
which human errors may cause fatal accidents. We have 
evaluated the Vestibulo-Ocular Reflex (VOR) as a possible 
predictor of drowsiness. The VOR is a compensatory eye 
movement that stabilizes retinal image during head motion, 
and is inevitably induced by vibration in a car running on the 
road. We employed an uneventful driving simulation (DS) 
featuring vibration stimulation to induce both drowsiness and 
VOR in healthy human subjects. VOR performance was 
characterized by its gain and variability, and evaluated in 
relation to the subjects’ drowsiness. A significant decrease in 
VOR gain and increase in variability accompanied subjective 
sleepiness, with the changes occurring before subjects became 
aware of sleepiness. From this finding, we developed a reliable 
method (88.9% accuracy) to predict oncoming sleepiness using 
changes in VOR performance as a cue. 

I. INTRODUCTION 
n objective measure of drowsiness is highly useful for 
preventing accidents caused by human error in factory 

and vehicle operations. An optimal metric should detect 
drowsiness at the earliest possible stage, allowing preventive 
treatments before the machine operator or the vehicle driver 
loses control of an object. In a previous report, we 
demonstrated that the pupil of the eye is a reliable predictor 
of drowsiness as it starts to constrict before the subjects 
experience a subjective sensation of sleepiness [1]. It is a 
useful predictor of sleepiness in a relatively 
constant-illuminance environment such as cloudy/rainy 
daytime and at night where the pupillary light reflex is not 
strongly induced. In the current study, we evaluate another 
possible predictor of drowsiness that can be used under any 
visual conditions, the vestibuloocular reflex (VOR) [2-4]. A 
popular model system in studies of biological motor control 
and learning, the VOR is a reflexive eye movement that 
counter-rotates the eyes during head motion to stabilize gaze 
direction in space and prevent image slippage on the retina. 
Although the shortest neuronal pathway subserving this 
reflex comprises only three synapses (the “three-neuron 
arc”), it has been shown that the performance of the VOR is 
severely degraded when the subject is sleepy [5]. When 
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driving, a driver’s head moves continuously due to 
roughness of the road. Thus, the VOR is a possible detector 
of drowsiness for car drivers. However, its potential as a 
predictor of drowsiness has not yet been evaluated. In this 
study, we employed a monotonous driving simulation to 
evaluate the VOR as a detector and predictor of drowsiness. 

II. METHODS 

A. Experimental setup 
A schematic diagram of the experimental setup is shown in 
Fig.1. Each subject sat comfortably on the driver’s seat 
equipped with a steering wheel, brake, and accelerator 
pedals (Logicool · PRC-11000) in a dark room. The subject 
wore goggles (NEWOPTO · ET-60-L) with 2 CCD cameras, 
each of which takes infrared images of each eye at 29.97 
frames per second (NTSC). Three -axis accelerometers and 
three-axis angular velocity meters were attached to the 
goggles to record the subject’s head motion. Electro-cardio 
gram (ECG) and respiratory wave (RW) data were also 
recorded. These signals were synchronized with the video 
images by Spike2 software (Cambridge Electronic Design), 
and digitized/stored in a hard drive at the sampling rate of 
1000Hz through Power1401 AD/DA device (Cambridge 
Electronic Design). The same data were branched and fed 
into another PC by LabVIEW software (NATIONAL 
INSTRUMENTS) for the purpose of real time monitoring of 
pupil diameter, eye movement, heart rate, and respiration. 

 

 
 

Fig.  1. Schematic diagram of the driving simulation setup. 
 

B. Driving simulation (DS) 
The driver’s seat in which subjects were comfortably seated 
simulated the swaying motion of driving on the road, 
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thereby inducing the pitch and vertical head movements 
typical during driving [6]. The subjects practiced the DS 
operation for one minute and adapted to the room luminance 
level for 10 minutes prior to the DS experiment. They were 
instructed to follow the car in front, and drive on the straight 
road at the maximum speed. Only the white lane markings 
and texture of grass on the shoulder of the road moved 
radially backward depending on the speed of the car during 
the DS. The subjects were asked to report the degree of their 
sleepiness every two minutes during the DS. The degrees of 
sleepiness employed were as follows: level-0: not sleepy, 
level-1: not sure if sleepy or not, level-2: sleepy, level-3: 
more sleepy than level-2, level-4: more sleepy than level-3, 
and so on. The DS visual scene was generated by a custom 
program running on a PC, and projected onto the screen 
264cm away from the subject’s eyes. The horizontal and 
vertical visual angles of the image were ±12.1, and ±10.7 
deg, respectively. The DS duration was 10 to 15 minutes. A 
total of 11 healthy subjects aged 23.3 ± 6.8 years (mean ± 
SD) participated in the experiment. The subject recruitment 
and experimental procedures for this study conformed to the 
Declaration of Helsinki. Most of the subjects were university 
students, and all gave informed consent. 
 

C. Data analysis 
The recorded data were analyzed off-line in MATLAB 
(Mathworks). Using custom-made scripts, from each frame 
of the videotaped eye images, eye position was measured as 
the center of the pupil. Eye position was measured from the 
center of the pupil for each frame of the videotaped eye 
images using custom scripts. Errors in the measurement of 
eye position due to blinks and saccades were eliminated 
automatically [5]. The eliminated periods of data were 
interpolated using a linear function. The measured eye 
positions [mm] were converted to angular eye position θ 
[deg] by the following equation: 
 

      (1) 

 
where l denotes the difference in eye positions [mm] 
between previous and current frames, and r denotes the 
radius of the average adult eye ball (12mm). Angular eye 
velocities e(t) [deg/s] were calculated by a low-pass 
differentiation filter. Ideal angular eye velocities  to 
perfectly compensate for head motion were calculated as 
follows: 
 

     (2) 

 
where  is the sign-reversed head pitch rotational 

velocity measured by the gyroscope attached to the goggles, 
and 
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eideal y (t) =
d
dt
2sin−1 y(t)

2L
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where y(t) is vertical head displacement estimated as the 2nd 
integration of the vertical head acceleration, and L denotes 
the distance between the eye and the fixation point on the 
DS screen. In all the subjects who participated in this study, 
head pitch rotations (

€ 

eideal p  ) were the majority (99%) 

contribution to the ideal head velocity value, thus were 
employed as . Using ideal eye velocity  and the 
actual measured eye velocity e(t), VOR gain  was 
estimated to minimize the square sum of the residual ε(t) in 
the following linear regression equation: 
 

€ 

e(t) =GVOReideal (t − τ) + dc + ε(t)     (4) 
 

where τ is the latency of eye movements in response to head 
motion. We evaluated VOR gain and the standard deviation 
of ε(t) as measures of VOR performance. 
 

III. RESULTS 
Fig. 2 shows eye velocity and ideal eye velocity traces, and 
their relationship when the subject was awake (a and b) and 
sleepy (c and d). When the subject was awake, the eye 
velocity trace is similar to the ideal eye velocity trace, 
resulting in a linear relationship whose slope (  ) is close 
to 1 (0.802) and the standard deviation of the residual 
(SDres) is small (1.017). In contrast, when the same subject 
was sleepy, his eye velocity trace deviated from the ideal eye 
velocity trace, resulting in large variability in their 
relationship (d) with a smaller regression slope (0.673) and 
larger SDres (2.964). This was observed consistently in all 
the subjects who became sleepy in the DS experiment. Thus 
both VOR gain and SDres clearly indicate the subject’s 
sleepiness.  
 

We further evaluated the possibilities of these parameters 
as predictors of subjects’ sleepiness. Fig. 3 illustrates 
changes in VOR gain and SDres together with the subject’s 
sleepiness level during the DS. This subject started to report 
sleepiness (sleepiness level 2 or higher) 8 minutes after the 
beginning of the DS. Interestingly, changes in SDres and 
VOR gain were evident in advance of the subject’s reports 
of feeling sleepy. At least one of the two parameters started 
to change in advance of the subjective sensation of 
sleepiness in all the subjects tested in the experiment, 
indicating that considered together, they can predict 
sleepiness. 
   The values of VOR gain and SDres vary by subject. VOR 
gains of some subjects are close to unity whereas some have 
lower VOR gains even when they are awake. The same is 
true for SDres. To account for inter-subject variability and 
detect/predict  sleepiness  by  use  of  a  simple algorithm we 
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Fig.  2. Examples of VOR when the subject was awake (a) and 
sleepy (c) during the DS. Gray traces are the ideal eye velocities to 
compensate for head motion during the DS. Lower panels are 
relationship between the ideal eye velocity and induced eye velocity 
as VOR when the subject was awake (b) and sleepy (d). 

 
 
employed the following indices: 
 

€ 

ΔGVOR (t) = −
GVOR (t) −GVOR

GVOR

*100      (5) 

 

    (6) 

 
where  and  are instantaneous VOR gain 
and SDres calculated using the data from a time window t - 
40 to t seconds.  and  are mean VOR gain 
and SDres, respectively, from the first 100 seconds of the 
DS during which each subject was fully alert. Thus, 

and  are VOR gain and SDres calculated 
for the last 40 sec and normalized using the baseline 
“awake” VOR performance values. The 40 second time 
window was determined to be the shortest possible sample 
that generated reliable estimates. Fig. 4a illustrates scatter 
plots of  vs  from 7 subjects who 
reported a sleepiness level 2 or higher (sleepy) during the 
DS. Black dots are data from the initial 100 seconds in 
which the subjects were highly aroused, whereas crosses are 
data from when their sleepiness level was greater than or 
equal to 2 (sleepy). The area containing 100% of the data 
points from the awake period (gray) was delimited using 
threshold  lines (dotted,  th1  and  th2).   This  area  (“arousal 
area,” hereafter) contained only 5% of the data from sleepy 
periods, indicating  that  data from awake and sleepy periods 

 
 

Fig.  3. Example of changes in VOR gain (top), SDres (middle), and 
the sleepiness level (bottom) during the DS. 

 
 
could be reliably separated. Fig. 4b plots  vs 

 of the same 7 subjects when their sleepiness 
levels were smaller than 2 (not sleepy). Interestingly, many 
data points are plotted outside of the arousal area even 
though they were not yet sleepy, suggesting that either one 
or both parameters started to move outside of the arousal 
area into the “sleepy area” before the subjects reported 
perceiving sleepiness. Fig. 4c illustrates changes in 

 and  in a subject whose sleepiness level 
reached 2 or above at 8 minutes during the DS. Dotted lines 
labeled as th1 and th2 are the same threshold values in Fig. 
4a and b. In this example,  exceeded the threshold 
th1 at around 2 minutes but soon came back below the 
threshold, then exceeded it again at around 3 minutes, while 

 stayed below its threshold th2 until around 5 
minutes. In other subjects (data not shown),  
exceeded the threshold before  crossed th1. From 
these observations, we can predict subjects’ sleepiness when 
either  or  exceeds each threshold 
continuously for 40 seconds. The 40-second margin was 
given to prevent false positives. In the case of the subject in 
Fig. 4c, the prediction can be made 260 seconds before the 
subject started to perceive sleepiness at 8 minutes. Over 9 
samples from the 7 subjects, the proposed method was 
successful to predict oncoming sleepiness in 86% of the 
cases, and the average prediction time was 112.5 seconds 
prior to subjects’ perception of sleepiness. 
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Fig.  4. Normalized VOR gain ( ) vs normalized 
standard deviation of the residual ( ) from 7 

subjects who reported sleepiness at level 2 or higher (sleepy). 
A: when the subjects were highly aroused (initial 100 seconds 
of the DS; black dots), or sleepy (sleepiness level 2 or higher; 
crosses). B: when the subjects were not yet sleepy (sleepiness 
level less than 2). C: changes in  and  of 

a subject whose sleepiness level reached 2 or above at 8 
minutes during the DS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. CONCLUSION 
In this study, we demonstrated that the performance of the 
VOR as characterized by VOR gain and the standard 
deviation of the residual component (SDres) can be a 
reliable predictor of sleepiness. The VOR is inevitably 
induced while driving a car due to the roughness of the road. 
Thus VOR performance is a practically useful predictor of 
sleepiness for car drivers. It was shown that in more than 
86% of the subjects, their oncoming sleepiness could be 
predicted a few minutes in advance. This information is 
significantly useful for preventing drivers from falling asleep 
at the wheel. The algorithms employed here to calculate 
VOR gain and SDres are simple, thus allowing real time 
execution of these parameters, given detection of a driver’s 
head and eye movements. Recently, such technologies 
applicable in a car have been developed based on real-time 
image processing to estimate face direction in 3D [7], and 
the 2D position of the pupils [8]. 
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