
 

  

 
Abstract— Multiunit recording with multi-site electrodes in 

the brain has been widely used in neuroscience studies. After 
the data recording, neuronal spikes should be sorted according 
to the pattern of spike waveforms. For the spike sorting, 
independent component analysis (ICA) has recently been used 
because ICA has potential for resolving the problem to separate 
the overlapped multiple neuronal spikes. However the 
performance of spike sorting by using ICA has not been 
examined in detail. In this study, we quantitatively evaluate the 
performance of ICA-based spike sorting method by using 
simulated multiunit signals. The simulated multiunit signal is 
constructed by compositing real extracellular action potentials 
recorded from guinea-pig brain. It is found that the spike 
sorting by using ICA hardly avoids significant false positive 
and negative errors due to the cross-talk noise contamination 
on the separated signals. The cross-talk occurs when the 
multiunit signal of each recording channel have significant time 
difference; this situation does not satisfy the assumption of 
instantaneous source mixture for the major ICA algorithms. 
Since the channel delay problem is hardly resolved, an ICA 
algorithm which does not require the instantaneous source 
mixing assumption would be appropriate for use of spike 
sorting.  
  

I. INTRODUCTION 
n the brain, it is assumed that information is represented 
by a spatio-temporal pattern of ensemble neuronal 

activity (e.g. cell assembly). Therefore, simultaneous 
recordings of multiple neuronal activities are essential for 
the study of information processing in the brain. For this 
purpose, recordings of extracellular action potentials 
generated from multiple neurons (multiunit) with multi-site 
electrode such as tetrode have been widely used (Fig. 1) [1]. 
Since the multiunit signal contains multiple neuronal 
activities near the electrode, signal processing including 
detection of neuronal spikes and sorting of action potentials 
to the spike-generating neurons is required. Recently, many 
spike sorting methods based on pattern classification 
technique have been proposed. The method sorts the 
multi-channel action potential signals according to the 
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pattern of spike waveforms. Thus the pattern 
classification-based method hardly separates overlapped 
neuronal spikes due to distortion of spike waveform, which 
are recorded when neighboring neurons excite 
synchronously. Since the synchronized neuronal activity is 
believed to play an important role in the brain information 
processing, solving the spike overlapping problem would be 
essential. 

One of the methods to solve the spike overlapping 
problem is inverse filter method [2]. However the 
construction of the filter requires template spike waveforms, 
other spike sorting process should be performed before the 
application of this method.  

Another method of resolving the overlapping problem is 
independent component analysis (ICA) [3]. Unlike inverse 
filter method, ICA can separate overlapped signals without 
prior information about the multiunit signals. However, there 
are some assumptions to be satisfied, e.g. statistical 
independence of the source signals, and the mixing process 
of the source signals. Thus, violation of the assumption 
could degrade the performance of spike sorting by using 
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Fig 1. A schematic diagram of extracellular action potential recording 
from multiple neurons with a tetrode (a bundle of 4 wire electrodes). 
Each recorded signal is a mixture of extracellular action potentials 
generated from several neurons near the tetrode.  
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ICA; this point has not been examined in detail so far. 
In this study, we investigate the performance of spike 

sorting of multiunit signals by using ICA. It is demonstrated 
that the most of neurons cannot be precisely sorted just by 
applying ICA algorithm to the multiunit data. It will be 
suggested that the deficit of the separation is mainly caused 
by the violation of assumption for ICA regarding the mixing 
process of single neuronal activities.  

 

II. METHODS 

A. Independent Component Analysis 
Assume that independent n-source signals (neuronal spikes, 
s(t)=[s1(t),…,sn(t)]T) are recorded with an m-channel 
electrode (x(t)=[x1(t),…,xm(t)]T), where T indicates transpose 
and t indicates time. If the transformation from s to x is an 
instantaneous linear mixture, the following relationship 
holds:  

)()( tt Asx = ,  
where A=(aij) is a m-by-n matrix whose elements are 
constant real numbers. If m = n, and A is a regular matrix. 
the system is regarded to satisfy complete condition. In this 
paper, we investigate the case of complete condition. ICA is 
the methods to estimate unmixing matrix W based on the 
independence of the source signals: 

)()( tt Wxy =  , 
where y(t) = [y1(t) , … , yn(t)]T is unmixed signal, each 
component of which represents single neuronal activity. If 
W=A-1, the source signals are completely reconstructed. 
However, since ICA cannot resolve ambiguity of amplitude 
and permutation of source signals, this relation generally 
does not hold. In this study, fastICA [4] and InfoMax ICA 
with natural gradient algorithm [5] were used to estimate 
unmixing matrix.  
 

B. Generation of Simulated Multiunit Signals 
To evaluate the performance of spike sorting, it is 

preferable to control the number of source signals because 
the number of sources are critical for ICA. In addition, the 
data of correct answer of spike separation would be useful 
for evaluating the accuracy of spike sorting. Thus, simulated 
multiunit data was used. The multiunit data were constructed 
as follows. First, extracellular action potentials of multiple 
neurons were recorded with a tetrode (a bundle of four 
stainless steel wire electrodes) in the CA3 field of guinea pig 
hippocampus [6]. Action potentials (spike) of neurons were 
detected and extracted from the signal by the threshold 
method [7]. Extracted spike waveforms were sorted by the 
conventional pattern classification-based method [1]. To 
improve the signal-to-noise ratio, spike waveforms were 
averaged at every sorted neuron. Finally, the averaged spike 
waveforms were linearly superposed and added independent 
white-noise as same as actual extracellular signals to obtain 
a simulated multiunit signal. Each set of simulated multiunit 
signals were composed of four single neuron’s activities, i.e., 

the number of source signals equals to that of recording 
channels (=4). Each neuron was assumed to fire randomly 
and independently at a firing rate of 50 Hz.  

C. Crosstalk attenuation ratio 
To evaluate the performance of spike separation, 

cross-talk attenuation ratio (CTAR) [8] was calculated. 
CTAR for the i-th component is defined as follows: 

CTARi ,
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where T indicates recording period. In this study, a single 
neuronal activity is assumed to be sorted correctly from 
other neuronal activities if and only if CTAR is nonnegative. 
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Fig. 2: Example of simulated multiunit data and single neuronal 
signals obtained by using ICA. (A) Spike timing of four neurons 
included in the simulated multiunit data. (B) Test signals (x) 
constructed by the superposition of single neuronal action potentials 
recorded with a four-channel electrode (tetrode) in guinea-pig 
hippocampus. (C) Separated neuronal signals (y) obtained just by 
using fastICA. Dashed lines indicate the signal level for spike 
detection by the threshold method. Symbols near the spikes indicate 
correct answer (black dot), false positive (upward triangle), and false 
negative (downward triangle) spikes, respectively.  
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D. Evaluation of time difference between recording 
channels 
If an m-channel signal is an instantaneous mixture of 

multiple sources, the signal emitted from a single source of 
each channel would be identical except for the amplitude. 
This implies that distribution of the data (signal) in the 
m-dimensional space has a linear-shaped structure. Contrary, 
if there was delay between the channels, the distribution 
should have a circular or complex shape. Therefore, the 
linearity of the distribution of the multi-channel signal 
represents how well the instantaneous mixing assumption is 
satisfied.  

The shape of data distribution can be characterized by 
principle component analysis. In this paper, we used 
contribution ratio of the first principal component (PC1) to 
quantify the linearity of the shape of data distribution, 
because PC1 increases as the shape of trajectory becomes 
more linear. The contribution ratio of PC1 is defined as 
follows: 

(Contribution ratio of PC1) ∑
=

=
m

i
idd

1
1 / . 

where di is the i-th eigenvalue of the covariance matrix of 
the data.  

III. RESULT AND DISCUSSION 
Figure 2 shows an example of simulated multiunit signals 

(x(t)) and the separated components (y(t)) obtained by using 
fastICA. Each component of y(t) is expected to represent a 
single neuronal activity, however, the components have 
significant cross-talk noise from other components except 
for y2(t). Due to the cross-talk noise; there are serious spike 
detection errors (open triangles). The similar result was 
obtained by using natural gradient ICA algorithm. Therefore, 
it is suggested that the simple application of ICA to 
multiunit signal could provide poor spike separation. To 
evaluate the performance of ICA for spike sorting 
quantitatively, we investigated the number of single neuron 
separated from 10 sets of simulated multiunit data by using 
natural gradient ICA algorithm and fastICA. It was found 
the average numbers of neuron separated by using fastICA 
and natural gradient algorithm were 2.8 and 2.5, 
respectively.  

As mentioned in Sec. II-B, the simulated multiunit signals 
satisfy the independence of source signals and complete 
condition, i.e. the number of sources equals that of recording 
channels. Therefore, the error of the spike sorting by ICA is 
attributed to the violation of another assumption; the 
immediacy of mixing of source signals.  We examined the 
satisfaction of the instantaneous mixing assumption. Figure 
3 and 4 show typical spike waveforms of two neurons. As 
shown in the Fig. 3, the normalized spike waveforms of all 
the recording channels are almost identical. The trajectory of 
the extracellular action potential in signal phase space seems 
almost linear-shaped (Fig. 3C). The linearity of the 
trajectory evaluated by the contribution ratio of PC1 was 

98.8%. These data suggest that the delay between the 
recording channels for recording the extracellular action 
potential generated from this neuron is negligible. On the 
other hand, in the case of the neuron shown in Fig. 4, the 
peak times of the action potential are different between the 
channels. The trajectory of the recorded signal in the signal 
phase space has a circular-shape. The linearity of the shape 
of trajectory is relatively low (91.6%). These data suggest 
that the delay between the recording channels is not 
negligible for this neuron, i.e. the assumption of 
instantaneous mixture is violated in this neuron.   

The effect of violation of the assumption on the 
performance of ICA-based spike sorting method was 
examined. Figure 5A shows multi-site recording data of four 
neurons recorded simultaneously. Except for neuron U3, 
linearity of the shape of trajectory is not high (<95%). 
Simulated multiunit signals were generated by compositing 
the action potentials and the data were sorted by using 
fastICA. Figure 5B shows the result of spike sorting. It was 
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Fig 3. Typical extracellular action potential waveforms satisfying 
instantaneous mixing assumption. A: Averaged spike waveform. B: 
Superimposed waveforms of which amplitude is normalized. C: 
Trajectories of the extracellular potentials in the signal phase space. 
The contribution ratio of PC1 is 98.8%. 
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Fig 4. Typical extracellular action potential waveforms not satisfying 
instantaneous mixing assumption. A: Averaged spike waveform. B: 
Superimposed waveforms of which amplitude is normalized. C: 
Trajectories of the extracellular potentials in the signal phase space. 
The contribution ratio of PC1 is 91.6%. 
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shown that only the signal originated from neuron U3 was 
concentrated on y1 component. However, signals from other 
neurons were not separated well; in other words, significant 
cross-talk noise invaded to the other neuronal signals. The 
cross-talk would disrupt the spike detection and deficit the 
performance of spike sorting. 

Figure 6 shows the histogram of the contribution ratio of 
PC1. The score of 34 out of 114 neurons was below 95 %, 
suggesting that the action potential of significant fraction of 
neuron are recorded at multi-site electrode with significant 
delay; they cannot be regarded as an instantaneous mixture 
of single neuronal action potentials. The results suggest that 
spike sorting by using ICA would have a serious problem 
regarding the accuracy due to the violation of assumption of 
instantaneous mixture of sources for ICA.  

IV. CONCLUSION 
In this study, we have demonstrated that the multiunit 

signals recorded by tetrode cannot be separated into single 
unit activity with considerable accuracy just by using ICA. It 
was found that the most of the single neuronal signals 
separated by ICA contain significant cross-talk noise from 
the other neurons, even if the number of neurons included in 
the recorded signals equals to the number of recording 
channels (i.e. complete condition is satisfied). It was 
revealed that the violation of instantaneous mixture of 
sources assumed in ICA algorithm caused significant 
cross-talk noise contamination.  

According to the neurophysiological studies, dendrites of 
central nervous neuron exhibit complex spatio-temporal 
dynamics such as passive and active propagation of action 

potential making use of their linear and nonlinear electrical 
properties [9, 10]. Consequently, extracellular potential near 
the dendrite would also change in a complex manner. This 
implies that it is very hard to solve the problem regarding the 
time delay between the recording channels of multi-site 
electrode. Therefore, to improve the performance of spike 
sorting by using ICA, it is necessary to adopt an ICA 
algorithm which does not require the instantaneous mixing 
assumption. 
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Fig. 5: (A) Example waveforms of extracellular action potentials 
simultaneously recorded from four hippocampal neurons with a 
tetrode. The neurons U2 and U3 are identical to the ones shown in 
Figs. 4 and 3, respectively. The contribution ratios of PC1 of U1-U4 
are 93.4%, 91.6%, 98.8% and 92.5%, respectively. (B) A result of 
spike sorting of the simulated multiunit signals by using fastICA.  
The simulated multiunit signals was composed of single neuronal 
action potentials shown in A. There are significant cross-talk 
contaminations except for U3.  
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Fig 6. Histogram of the contribution ratio of PC1 (n=114).Mode of 
contribution ratio is 98-99 %. 29.8 percent (34/114) of neurons are 
below 95 %. It indicates more than half of neurons dissatisfy 
instantaneous mixing assumption. 
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