
  

  

Abstract—Tripolar electrodes have been shown to have less 
mutual information and higher spatial resolution than disc 
electrodes. In this work, a four-layer anisotropic concentric 
spherical head computer model was programmed, then four 
configurations of time-varying dipole signals were used to 
generate the scalp surface signals that would be obtained with 
tripolar and disc electrodes, and four important EEG artifacts 
were tested: eye blinking, cheek movements, jaw movements, 
and talking. Finally, a fast fixed-point algorithm was used for 
signal independent component analysis (ICA). The results show 
that signals from tripolar electrodes generated better ICA 
separation results than from disc electrodes for EEG signals 
with these four types of artifacts. 

I. INTRODUCTION 
ndependent component analysis (ICA) is a computational 
method for separating a multivariate signal into additive 

subcomponents assuming there is mutual statistical 
independence of the non-Gaussian source signals [1]. To the 
best of our knowledge, ICA was first applied to 
encephalography (EEG) by Makeig et al. (1996) and is now 
widely accepted in the EEG research community; most often 
to detect and remove stereotyped eye, muscle, and line noise 
artifacts [2][3]. Ventoura et al. used ICA for reconstructing 
averaged event-related potentials (ERPs) in the time window 
of the P600 component, selecting a subset of independent 
components’ projections to the original electrode recording 
positions [4]. Basically Ventoura et al. used ICA as a filter. 
 
However, ICA also has been used to separate biologically 
plausible brain sources whose activity patterns are distinctly 
linked to behavioral phenomena [5]. Many of the biologically 
plausible sources ICA identifies in EEG data have scalp maps 
nearly fitting the projection of a single equivalent current 
dipole [6,7] and are therefore compatible with the projection 
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to the scalp electrodes of synchronous local field activity 
within a connected patch of cortex. 
 
Fast ICA is an efficient and popular algorithm invented by 
Aapo Hyvärinen at Helsinki University of Technology [8]. 
The algorithm has cubic convergence speed and does not 
require parameter adjustment.  
 
Concentric electrodes outperform disc electrodes with higher 
signal-to-noise ratio (SNR), higher spatial selectivity, and 
lower mutual information (MI), which should be beneficial 
for the field of EEG [9]-[11]. Further, McFarland et al. 
concluded that the common average and the Laplacian 
derivation yield good performance on EEG classification 
[12]. Babiloni et al. demonstrated that the surface Laplacian 
transformation of EEG signals can improve the recognition 
scores of imagined motor activity [13] [14]. 
 
Munck et al. [15], to our knowledge, were among the first to 
use the four-layer anisotropic concentric spherical head 
model, with Zhou and van Oosterom revising its numerical 
computation method [16]. In this work, a fast algorithm was 
developed for the four-layer anisotropic concentric spherical 
head model, calculating the potentials hundreds of times 
faster than the Zhou - van Oosterom algorithm. Also, a 
coordinate translation algorithm was implemented so that 
potentials at any scalp surface location from multiple dipoles 
with arbitrary moment vectors at any given positions within 
the head could be calculated. 
 
Sine wave, rectangular, rising cosine and white noise signals, 
were used for the dipole sources of our four concentric 
spheres model. Four important EEG artifacts were tested: eye 
blinking, cheek movements, jaw movements, and talking. 
Different numbers and size of the electrodes for both tripolar 
electrodes and disc electrodes were used in simulating the 
surface potentials. The ICA results showed that, in this work, 
the modeled signals from tripolar electrodes gave better ICA 
separation results than from disc electrodes. 

II. METHOD 

A. Four-layer head model and its fast numerical 
calculation algorithm 

Equation (1) is used to calculate the dipole generated 
potential at the scalp surface in the four-layer head model 
[15]. 
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where 0

nP and 1
nP  are the associated Legendre functions, and 

θM  and rM  are the radial and tangential component of the 
dipole vector, respectively. Please see [15] for the other 
notations involved in the above formula. Numerical 
calculation [16] of the four layer head model was improved in 
two aspect:  
 
1. Calculation speed improvement using database 

method; 
2. Generalization of the dipole source positions and 

dipole moment vectors using coordinate translation. 
 

B. Independent Component analysis and its Fast 
Fixed-Point Algorithm 

The basic steps for calculating ICA are shown below:  
 

PC = PRINCOMP(v)                      (2)                                                                                           
Ty PC ν=                                     (3)                                           

      )cov(/1 yD =                                (4) 

x D y=                                           (5) 
TS B x=                                           (6) 

Where '
21 ],...,,[ nvvvv = are the zero-mean signals 

acquired by electrodes, in our case calculated at the electrode 
locations; PC is the orthonormal transformation matrix of v, 
which was calculated with Matlab, and has the unit variance 
for each column; y is the projected vector; D is a transfer 
matrix; the mean of x is not necessarily zero, but 

{ }TE x x I= . B is the orthogonal matrix ( IBBT = ) to be 
found by the fast fixed-point ICA method [8]. S is the ICA 
separation results – the separate sources. 
 

C. Source dipoles distribution and wave forms 
Sine wave, rectangular, rising cosine and white noise signals, 
were used for the dipole sources (Fig. 3-4, first row of 
waves). The dipoles can be set at any locations within the 
head.  

D. EEG artifact simulation   
To perform a comparison under controlled conditions four 
artifacts [17]: eye blinking, cheek movements, jaw 
movements, and talking were recorded and combined with 
the simulated signals at the electrodes. The SNR was 
calculated by determining the signal and noise power in the 
frequency domain for the recorded signals from tripolar and 
disc electrodes respectively and were:  
 

snr_t=[13,18,23,28];                    (7) 
snr_d=[-28,-17,-13,-7];                (8) 

 
Where the snr_t and snr_d are the SNR of the tripolar and disc 
electrodes respectively. The amplitude of the artifact waves 
were simulated for each electrode with the same SNR as was 
determined in the recorded noise signals (Fig. 1) by [17].  
 

     
 

(a)                                        (b) 
 

 
(c) (d)     

 
Fig. 1 Artifact waveforms of (a) eye blinking, (b) cheek 

movements, (c) jaw movements, and (d) talking 

E. Electrodes distribution and number of electrodes 
For the model, the electrodes can be at any position on the 
surface of the scalp, and the number of electrodes should not 
be less than the number of sources. In real conditions when 
the number of electrodes is given, the number of sources to be 
found by ICA would be less than the number of electrodes.  
The four electrodes in the model were placed at C3, C4, Cz, 
T3, though T4 and more positions were tested, using from 4 
to 10 electrodes.  Electrodes for the artifacts recorded by [17], 
and used in our model, were from C3, C4, and Cz.   

III. RESULTS 

A. Higher spatial sensitivity of tripolar electrodes 
 
Fig. 2 shows the potentials produced by a vertically oriented 
unit dipole located at [58,0,0] (spherical coordinates: [radius, 
azimuth, zenith]; radius is in mm). Those potentials are 
simulated as if being recorded by a disc and a tripolar 
electrode located at the surface of the sphere at different 
angular positions from phi = 0 ("north pole" of the sphere, 
[75,0,0] ) to phi = π ("south pole",  [75,0, π]). 

B. ICA results  
ICA was executed with 4 to 10 electrodes.  Fig. 3 are the ICA 
results for 10 electrodes with talking artifacts, the same 
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condition as in Fig.4 e1 and e2. Fig. 4 shows the wave forms 
of the dipoles (row a), the ICA results of signals from tripolar 
electrodes (row x1), and the ICA results of the signal from 
disc electrodes (row x2), where x is from b to e, with respect 
to the electrode potentials with four artifacts: (b) eye blinking, 
(c) cheek movements, (d) jaw movements, and (e) talking.  
Table 1 gives the normalized covariance for  the ICA 
separation results and the source signals. 
 

                   (a)                                                    (b) 

Fig. 2 Calculated signals from (a) tripolar and (b) disc 
electrodes with no added noise. 

 
 

 
Fig. 3 ICA Separation results using 10 electrodes with talking 

artifacts  (a) dipole source waves;  (x1) Tripolar electrode 
ICA results ; (x2) Disc electrode ICA results 

 
Table 1 The normalized covariance of the ICA separation 
results and the source signals 

         Dipole source 
Cov 

 

Rising 
cos 

Rect Sine White 
noise 

Tripolar 0.636 0.996 0.985 0.976 Eye 
blink Disc 0.231 0.993 0.966 0.962 

Tripolar 0.846 0.998 0.987 0.973 Cheek 
move Disc 0.231 0.985 0.980 0.972 

Tripolar 0.942 0.999 0.997 0.974 Jaw 
move Disc 0.237 0.989 0.977 0.960 

Tripolar 0.966 0.999 0.992 0.942 talk 
Disc 0.393 0.993 0.985 0.907 

 
 Fig. 4 ICA results from electrodes potentials with four artifacts (a) 
dipole source waves;  (x1) ICA results from the tripolar electrode 
signals;  (x2) ICA results from the disc electrode signals. x is from 
b to e, with respect to the four artifacts: (b) eye blinking, (c) 
cheek movements, (d) jaw movements, and (e) talking.  
(Vertical axis – arbitrary units, horizontal axis –  time in ms.) 
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IV. DISCUSSION 
ICA is mainly used to separate linearly combined signals, 
acting as a filter. For a combined signal P which is acquired 
from an electrode, P can be expressed by 
 

...2211 ++= sasap                                   (9) 

where is  are the uncorrelated, zero-mean, unit variance 

signals. Thus the weighted coefficients ia  are the amplitudes 

of the source signals. The greater the difference between ia , 
the better the results of ICA filtering (separating). Because 
tripolar electrodes have high SNR, the amplitude of their 
signals will be relatively higher. Since they have higher 
spatial resolution as seen from Fig. 2 and lower mutual 
information, they will give greater difference of coefficients 

ia  for each electrode, leading to better ICA filtering. In Fig. 
4, under the same conditions, the ICA results of the tripolar 
electrode signals extracted all the independent components 
with high similarity (see table 1), while the ICA results of the 
disc electrodes caused inaccuracy in each independent 
component extracted. In particular, a rising cosine component 
is not recognizable in the results from the disc electrodes (Fig 
4 b2-e2 1st column).  The higher fidelity of the tripolar 
electrodes may also be caused by their high rejection of 
common mode noise, which can be seen from the tripolar 
potential calculation formula [18]: 
 

PL=16(PMiddle-Pc)-(POuter-Pc)                            (10) 
 
where PMiddle, POuter and Pc are potentials from the middle ring, 
the outer ring and the center disc, respectively. Since those 
three electrode elements are close to each other, they have 
nearly the same common mode noise, which becomes sharply 
attenuated when equation (10) is used in estimation of the 
Laplacian tripolar potential PL. When we consider sources 
such as the AC wall mains, which are generally distant from 
the electrodes compared to the signal source in the brain, the 
common mode noise rejection of the trpolar concentric 
electrode is beneficial.   
 
We also found that adding more electrodes than there are 
sources did not improve the ICA separation of the signal 
sources. In Fig. 3 ten electrodes were utilized in the ICA 
process and there is no evident difference between Fig. 4 e1 
and e2 when only 4 electrodes were utilized. 

V. SUMMARY/CONCLUSION 
For the four EEG artifacts tested in this work, tripolar 
electrodes generate the best ICA separation results compared 
with disc electrodes. This is most likely due to the tripolar 
electrodes higher sensitivity to the source spatial distribution, 
and thus higher noise attenuation for the noise sources far 
from the electrode positions (head surface). Also, the tripolar 
electrodes’ higher spatial resolution should enable them to 
provide more uncorrelated signals benefiting the ICA.  
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