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Abstract— Detecting artifacts produced in electroencephalo-
graphic (EEG) data by muscle activity, eye blinks and electrical
noise, etc., is an important problem in EEG signal processing
research. These artifacts must be corrected before further
analysis because it renders subsequent analysis very error-
prone. One solution is to reject the data segment if artifact is
present during the observation interval, however, the rejected
data segment could contain important information masked by
the artifact. It has already been demonstrated that independent
component analysis (ICA) can be an effective and applicable
method for EEG de-noising. The goal of this paper is to propose
a framework, based on ICA and wavelet denoising (WD), to
improve the pre-processing of EEG signals. In particular we
employ the concept of spatially-constrained ICA (SCICA) to
extract artifact-only independent components (ICs) from the
given EEG data, use WD to remove any brain activity from
extracted artifacts, and finally project back the artifacts to be
subtracted from EEG signals to get clean EEG data. The main
advantage of the proposed approach is faster computation,
as all ICs are not identified in the usual manner due to
the square mixing assumption. Simulation results demonstrate
the effectiveness of the proposed approach in removing focal
artifacts that can be well separated by SCICA.

I. INTRODUCTION

Ocular artifacts (OAs) (eye movements and eye blinks),

muscle noise, heart signals, and line noise often produce

large and distracting artifacts in electroencephalographic

(EEG) recordings [1]. Rejecting EEG segments with artifacts

offers an easy solution, however, the amount of data lost

to artifact rejection may be unacceptable [2]. The EEG

signals contain neural information below 100 Hz (in many

applications the information lies below 30 Hz) [1], and

conventional filtering methods can be used to remove, e.g.,

line noise and other high frequency components. The main

problem is OAs and muscle artifacts that have a spectral

overlap with the underlying EEG and cannot be removed

using conventional filtering [3].

It has been shown by many researchers that independent

component analysis (ICA) [4] can be used to efficiently

separate the distinct artifactual processes from EEG data [5],

[6]. In most of existing methods, after ICA, independent

components (ICs) corresponding to artifacts are manually

selected using visual inspection. The identified artifact ICs

are rejected and remaining ICs are used to reconstruct clean

EEG data. If some brain activity is leaked to artifact ICs,

so rejecting these components results in loss of desired
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information. In order to solve this problem, and to have

a fully automatic method, wavelet enhanced ICA (wICA)

is proposed in [7]. The wICA combines ICA with wavelet

denoising (WD), and makes use of wavelet thresholding

for denoising of the demixed ICs. The thresholding allows

conservation of the time-frequency structure of artifacts and

recovering of the cerebral activity “leaked” into the compo-

nents [7]. This method does not require manual identification

of artifact ICs, as all ICs are wavelet denoised. However,

extracting all ICs poses a problem mainly due to long

processing time. In order to solve this problem we propose an

approach based on spatially-constrained ICA (SCICA) [8],

[9]. SCICA incorporates reference or constraint topographies

in the ICA algorithms. This allows to extract only desired ICs

- that is artifacts in our case. Since not all ICs are extracted,

this approach is faster in computation. We then apply WD

to artifact ICs to remove brain activity and get artifact-

only signals. Finally these artifacts are projected back, and

subtracted from, EEG data to get clean EEG signals.

The rest of the paper is organized as follows. Section II

describes the proposed approach, and Section III presents

some simulations results. Finally concluding remarks are

given in Section IV.

II. PROPOSED APPROACH

The block diagram of the proposed approach for prepro-

cessing of EEG data is shown in Fig. 1. As shown, EEG data

is assumed to be generated according to ICA model [4] as

x(t) = As(t) + v(t), (1)

where x(t) = [x1(t), x2(t), · · · , xM (t)]T are a linear mixture

of N sources s(t) = [s1(t), s2(t), · · · , sN (t)]T , A is M ×N
mixing matrix, and v(t) = [v1(t), v2(t), · · · , vM (t)]T is

additive noise at the EEG sensors. Here the number of

sources N , their waveforms si(t), and mixing matrix A are

all unknown. For the sake of simplicity we consider the

square mixing problem, i.e., M = N . The source signals

si(t) can be considered as being generated from different

brain regions and artifacts. These artifacts mask the brain-

activity information, and are harmful for further analysis and

processing. Thus it is very important to process EEG data

x(t) so that contribution of artifacts is removed, without

affecting the brain-activity information, and is the main task

of the work presented in this paper. As shown in Fig. 1., the

proposed approach comprises following key steps:

• Preprocessing using conventional filtering.
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Fig. 1. The block diagram of proposed approach for preprocessing of EEG data.

• Apply SCICA to get SC-ICs representing artifacts in

EEG data.

• Apply WD to remove any brain activity leaked to these

artifact ICs.

• The extracted artifact-only signals are projected back,

and subtracted from, EEG data to get clean EEG for

further analysis and processing.

The objective of conventional filtering is to process raw

EEG data x(t) to remove 50 Hz line noise, baseline values,

artifacts occupying very low frequencies and high frequency

sensor noise v(t), and this stage might include combination

of various conventional notch, lowpass, and/or highpass

filters.

A. Spatially-Constrained ICA (SCICA)
The key step in the proposed approach is the application

of SCICA to get artifact ICs from filtered and baseline

corrected EEG data y(t). Here we briefly describe SCICA,

and for details, the reader is referred to [8], [9]. The main

idea is to define a spatial constraint (SC) on the mixing

matrix A to represent specific prior knowledge or prior

assumptions regarding the spatial topography of some source

sensor projections, i.e., the SC operates on selected columns

of A and is enforced with reference to a set of predetermined

constraint sensor projections, denoted by Ac. Thus, the

spatially constrained mixing matrix comprises two types of

columns

A = [Âc, Au], (2)

where Âc ≈ Ac are columns subject to the constraint, and

Au are otherwise unconstrained columns. Depending on the

application, the predetermined sensor projections (or con-

straint topographies) could be obtained by manual selection

of sources extracted from a previous data segment using

conventional ICA methods or derived from the predictions of

some mathematical model of the signal generating process

(e.g., biophysical or physiological) under investigation [8].

Depending upon the confidence level about the accuracy of

the constraint topographies Ac, and the extent to which con-

strained columns Âc may diverge from reference Ac, there

are three types of constraints: 1) hard constraints indicating

fixed column, 2) soft constraints allowing divergence within

a small angular threshold α, and 3) weak constraints that

only provide an initial guess for otherwise unconstrained

estimation. We consider the spatially-constrained-FastICA

(SCFastICA) algorithm of [8] with soft SCs.
The SCFastICA algorithm seeks to maximize the sta-

tistical independence of the unconstrained sources while

minimizing the divergence between the spatially constrained

source sensor projections and their corresponding reference

topographies. Since we are interested in only SC-ICs, we use

a deflationary approach to extract only desired components,

and thus the output of the SCFastICA algorithm is SC-ICs

(which are artifact signals in our case), and an estimate of

corresponding mixing matrix. This results in fast computa-

tional time, as compared with if all ICs are extracted.

B. Wavelet Denoising (WD) of SC-ICs

It is worth mentioning that SC-ICs extracted by SCFas-

tICA are expected to correspond to artifacts only, however,

some brain activity might leak to these extracted signals.

Since artifacts have a frequency overlap with the brain

signals, conventional filtering cannot be used, and hence

we propose to use WD to remove any brain activity from

extracted SC-ICs.

The discrete wavelet transform (DWT) analyzes a finite

length time domain signal by breaking up the initial domain

in two parts: the detail and approximation information [10].

The approximation domain is successively decomposed into

detail and approximation domains. The basic principle is that

the decomposition of a noisy signal on a wavelet basis (by

DWT) have the property to “concentrate” the informative

signal in few wavelet coefficients having large absolute

values without modifying the noise random distribution.

After transformation the noise coefficients have small values,

inversely to the informative signal (normal or pathologic

neural activity and artifacts). Therefore, denoising can be

achieved by thresholding the wavelet coefficients [11]. We

have implemented WD using the MATLAB wavelet tool

box as follows: (the corresponding MATLAB function
is given in parenthesis)

• Choosing the value of the threshold (ddencmp)

• Apply DWT (swt) to the SC-IC signal to obtain details

and approximations

• Threshold (wthresh) the detailed components ob-

tained in the previous step

• Apply inverse DWT (iswt) to obtain artifact-only

signal

Once “clean” artifacts are obtained, these are projected

back to EEG sensors by using mixing matrix A estimated

by SCFastICA, and artifacts in the EEG data are obtained,

as denoted by z(t) in Fig. 1. Finally, the clean EEG data

x̂(t) is obtained by subtracting artifacts z(t) from EEG data

y(t).
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Fig. 2. Raw EEG data after preprocessing through conventional filtering.
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Fig. 3. Independent components (ICs) obtained by unconstrained FastICA
algorithm.

A comparison of the proposed approach with the existing

methods is given below:

• In [8], SCFastICA is proposed to extract all ICs in-

cluding those corresponding to incorporated SCs. The

SC-ICs are rejected before EEG data is reconstructed.

This results in an almost automatic approach for artifact

removal, however, rejecting SC-ICs also removes brain

activity masked in these components, and might result in

appreciable loss of desired information. In our approach,

we exploit the concepts of SCICA and WD to reject

artifacts, and get the clean EEG data. As compared with

[8], less brain information is rejected and hence better

EEG signals are extracted.

• The wICA proposed in [7] computes all ICs, and

uses WD to reject artifacts. This results in improved

artifact rejection, however, requires computation of all

ICs which might pose problem of long computational

time. In comparison with wICA [7], only a few ICs cor-

responding to artifacts (thanks to SCICA) are extracted

and processed and hence a faster computation time is

achieved. This is quite advantageous, especially in long

term ongoing EEG recordings.

III. RESULTS AND DISCUSSION

Here we present some simulation results to verify the

effectiveness of the proposed approach.
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Fig. 4. Reconstructed EEG data after rejecting artifact ICs (as shown in
Fig. 3, ICs 8, 10 , 14 and 16 mainly contain artifacts).
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Fig. 5. Clean EEG data obtained by applying wavelet enhanced ICA
(wICA) of [7].

Fig. 2 shows raw EEG data after being processed by

conventional filtering. The result of unconstrained ICA using

the FastICA algorithm is shown in Fig. 3. We see that,

in this particular example, the FastICA algorithm can well

separate the artifacts in ICs 8, 10, 14 and 16. A close

observation reveals that these ICs contain some brain activity

as well. Rejecting these ICs, and an artifact free EEG data

can be reconstructed as shown in Fig. 4. Fig. 5 shows

EEG data reconstructed by applying wICA [7], where ICs

shown in Fig. 3 are denoised using DWT before EEG being

reconstructed.

The results of the proposed approach are shown in Figs.

6 and 7. Here results of unconstrained FastICA are used to

obtain an initial guess for spatial constraints to be used in

SCFastICA algorithm [8]. It is worth mentioning that running

unconstrained ICA is not the main part of the proposed

approach, and is used merely to initialize the algorithm1. Fig.

6(a) shows the SC-ICs extracted by SCFastICA. It is evident

that these SC-ICs correspond to artifact ICs give in Fig. 2.

These extracted SC-ICs are wavelet denoised to remove any

1As stated earlier, SCICA incorporates predetermined sensor projections
(or constraint topographies). In real EEG recordings, these constraints can be
derived from the predictions of an appropriate mathematical model, or could
be obtained by manual selection of sources extracted from previous data
segment using conventional ICA [8]. In this paper, we have used simulated
EEG data, and hence, unconstrained ICA to get the reference topographies
to be used as constraints with SCICA.
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Fig. 6. Results obtained by spatially constrained Fast ICA. (a) Extracted
SC-ICs corresponding to artifacts. (b) Wavelet denoised SC-ICs. (c) Artifacts
projected to the scalp.

brain activity. A level 5 decomposition and haar wavelet

is used with MATLAB function swt to compute stationary

wavelet transform, where ddencmp is used to get the default

threshold. The artifact-only signals as shown in Fig. 6(b).

Finally these artifacts are projected back to the EEG sensors

to get artifacts projected at the scalp. Subtracting artifacts

from the EEG data gives the denoised EEG signals as shown

in Fig. 7. In order to compare the performance of various

methods, artifact free epoch are shown in Fig. 8, which

shows that rejecting artifacts ICs results in loss of brain

information, and gives a distorted version of EEG signal,

whereas wICA and proposed approach are able to retain the

brain information.

IV. CONCLUDING REMARKS

In this paper we have proposed a new approach for re-

moving artifacts from multichannel EEG data. In contrast to

existing approaches, where the emphasis is to reject artifacts

directly, the proposed approach attempts to first identify the

artifacts and then perform the denoising. The main advantage

is computational efficiency, as less data is processed as

compared with the existing approaches. Our experiments

show that the proposed approach is advantageous in the

case of focal artifacts that can be well localized by SCICA,

and hence can be applied to removing ocular artifacts, for

example.

In the future, it would be interesting to explore the removal

of other types of artifacts. In this paper we have considered

only simulated EEG data, and denoising long term ongoing

EEG recordings is also a task for future work.
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Fig. 7. Clean EEG data obtained by proposed approach.
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Fig. 8. Zoomed signals during artifact free epoch at FP1 electrode. (a)
Raw EEG signal. (b) Rejecting artifact ICs. (c) Wavelet enhanced ICA. (d)
Proposed approach.
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