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Abstract— A brain computer interface (BCI) uses 
electrophysiological activities of the brain such as natural 
rhythms and evoked potentials to communicate with some 
external devices. P300 is a positive evoked potential (EP), 
elicited approximately 300ms after an attended external 
stimulus. A P300-based BCI uses this evoked potential as a 
means of communication with the external devices. Until now 
this P300-based BCI has been rather slow, as it is difficult to 
detect a P300 response without averaging over a number of 
trials. Previously, independent component analysis (ICA) has 
been used in the extraction of P300. However, the drawback of 
ICA is that it extracts not only P300 but also non-P300 related 
components requiring a proper selection of P300 ICs by the 
system. In this study we propose an algorithm based on 
constrained independent component analysis (cICA) for P300 
extraction which can extract only the relevant component by 
incorporating a priori information. A reference signal is 
generated as this a priori information of P300 and cICA is 
applied to extract the P300 related component. Then the 
extracted P300 IC is segmented, averaged, and classified into 
target and non-target events by means of a linear classifier. 
The method is fast, reliable, computationally inexpensive as 
compared to ICA and achieves an accuracy of 98.3% in the 
detection of P300. 

I. INTRODUCTION 

ecently, a new technology has emerged enabling direct 
communication between human brain and computer, 

known as brain-computer interface (BCI). This is done by 
utilizing certain electrophysiological activities that reflect 
the function of the brain [1].  BCI using non-invasive means 
has been a subject of much research and certain natural 
rhythms such as alpha and beta-rhythms have been used for 
BCI [2][4][5]. However, the main drawback using these 
natural brain rhythms in BCI is that they require extensive 
training for controlling the natural brain waves. That is why 
the usage of evoked potentials (EP) for BCI is being 
extensively researched as they do not require subject 
training. P300 is a positive EP that is elicited approximately 
300ms after an attended external stimulus. 
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    In 1988, Farwell and Donchin first introduced the idea of 
using P300 in BCI. They introduced some P300 detection 
methods for BCI such as stepwise discriminant analysis 
(SWDA), peak picking, area and covariance [3]. Later 
Donchin added discrete wavelet transform (DWT) to 
SWDA [6]. P300 detection usually requires extensive 
averaging and more the number of trials the better the 
accuracy and reliability of the BCI system. However, 
increasing the number of trials increases the processing time 
for detection, which is one drawback of the P300-based BCI. 
   Recently, independent component analysis (ICA) has been 
used for the extraction of P300 signals in [7] and [9]. ICA is 
a statistical technique that is used to separate a mixture of 
signals into its components provided that the components 
are independent of each other [8]. The main drawback of 
ICA is that the number of components is equal to the number 
of observations. Therefore, one has to apply additional 
signal processing methods to ascertain which components 
contain the P300 response. Spatially constrained ICA 
(scICA) is a semi-blind source separation technique which 
extracts only the relevant sources and has been previously 
used for the detection of P300 in [10]. scICA incorporates a 
priori information of the typical P300 spatial distribution. 
The spatial distribution is found by running ICA on the 
available dataset and creating a template, which is used as a 
single spatial constraint to constrain the mixing matrix. 
Hence, one has to train the spatial constraints before 
extracting the desired P300 sources. In this study, we 
propose to use constrained ICA (cICA) described in [11] and 
[13] for P300 extraction. The advantage of cICA is that it 
can extract only the relevant source blindly, without any 
training of the constraints being applied.  The potential of 
cICA has already been investigated in other areas like 
extraction of rhythmic activity [12] and artifact rejection 
[13].  

II. METHODOLOGY 

A. Constrained ICA 

   ICA is a statistical technique used to separate independent 
sources, assuming the sources are linearly mixed. If we 
assume that the sources are s(t) = [s1(t), s2(t),…, sn(t)]

T  and 
observations are x(t) = [x1(t),x2(t),…,xn(t)]

T  ,  then the linear 
mixture can be represented by 
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Fig. 1. Flowchart describing the steps of the P300 extraction process via cICA 

 
                              x(t) = As(t)                                    (1) 

where A is the mixing matrix. The ICA finds a de-mixing 
matrix such that   
                                  s(t) = Wx(t)                                    (2) 
where W = [w1,w2,w3,…,wn] is the de-mixing matrix. The 
problem with ICA is that the number of channels are 
assumed to be equal to the number of independent sources. 
In our problem we require only the component associated 
with P300. The cICA algorithm enables us to extract the 
required component by incorporating a priori information 
of the desired source [11]. In this case, a priori information 
is called a reference signal which carries the information of 
the desired source. The reference signal must be close 
enough to the desired signal so that the cICA can converge 
to the particular independent component (IC). Let the 
reference signal be denoted by r(t)=[r1(t),r2(t),…,rn(t)]

T. 
The closeness constraint used for extraction of single IC is  

gi(wi) = ε(wi
Tx, ri) - ξ   0                          (3) 

where ε is some closeness measure between the estimated 
output wi

Tx and the reference signal ri  and ξ is the closeness 
threshold parameter. The measure of closeness used in our 
implementation of the algorithm is mean-squared error 
(MSE) and we used the same method as described in [11] to 
adjust the value of thresholding parameter. With the 
constraints in place, the constrained ICA algorithm with 
multi-reference comes down as follows: 

        maximize:      C(y)=  
1

k

i
 J(yi) 

        subject to :     g(W)  0,    h(W) =  0                        (4) 
 
where                         

                       J(yi)   ρ[E{G(yi)}-E{G(v)}]2                           (5) 

 

denotes the ICA contrast function [8], k is the number of 
reference signals,  yi= wi

Tx is the estimated output,  ρ is a 
positive constant, v is a zero mean and unit variance 
gaussian variable, G(.)=logcosh(.) is non-quadratic 
function described in [8], g(W) is closeness constraint and 
h(W) constrains the outputs to have a unit variance. We 
used the augmented Lagrangian approach as described in 

[11] to find the demixing matrix W.  

B. Dataset 

   We used the BCI competition 2003 dataset IIb [14] 
provided by the Wadsworth center for our experiment. In 
this dataset, the user was presented with a 6 x 6 matrix of 
characters. The dataset consists of 64 EEG channels in 
which the user’s task was to focus on characters in a word 
that was prescribed by the investigator. For each character, 
the user display was as follows: the matrix was displayed 
for a 2.5 s period and during this time each character had the 
same intensity. Subsequently each row and column in the 
matrix was randomly intensified for 100ms. After 
intensification of a row or column, the matrix was blank for 
75ms. Row or column intensifications were block 
randomized in blocks of 12. Each set of 12 intensifications 
was repeated 15 times for each character. Each sequence of 
15 sets of intensifications was followed by a 2.5 s period, 
during which the matrix was blank.  

C. P300 Extraction via cICA 

   The main steps for our algorithm are described in Fig. 1, 
which are detailed as follows: 
    1)  Bandpass Filtering: The data was bandpass filtered  
from 0-10 Hz because spectral analysis showed P300 to be 
within this frequency range.  

2) Reference Signal Generation: A reference signal was 
generated for each of the 6 rows and columns separately. 
The reference signal for one particular row or column 
consisted of a rectangular pulse within 250 to 350 ms 
interval after the stimulation of that particular row or 
column. As each block contains 15 repetitions of each row 
or column so the reference signal consists of 15 pulses. So a 
total of 12 reference signals were generated.  

3) cICA: cICA was applied on the block of data by using 
the reference function generated in order to detect which 
rows or columns elicited  P300 responses. As we generated 
a reference signal for each row or column, hence in effect 
we derive 12 ICs from the cICA algorithm.  

4) Segmentation and Averaging: From the beginning of 
stimulation of the particular row or column each IC was 
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Fig. 2. (a) A part of reference signal showing 4 pulses (b) Corresponding extracted IC from target data (c) Corresponding extracted IC from non-target data 
 

 

                       

             (a)                                                                                                                         (b) 

Fig. 3. (a) Comparison of averaged segment containing P300 and non P300 signals (b) Plot of feature space with a linear classifier 

 
segmented into 15 epochs of 650 ms intervals and averaged.  
5) P300 Detection:  Each averaged segment was correlated 
with a P300 template. The correlation coefficients and 
maximum amplitude of the averaged segment were used as 
features to classify the events into the target and non-target 
events.  
   A linear classifier was designed which was able to 
classify the target and non-target events successfully. The 
feature with the classification boundary is illustrated in Fig. 
3(b).   

III. RESULTS 

   Before the application of cICA, the existence of P300 was 
confirmed by averaging target and non-target events at the 
electrode channel Cz. Fig. 2(a) shows a portion of the 
reference signal generated for a specific row or column. The 
extracted components by using the cICA algorithm are 
illustrated in Fig. 2(b) and Fig. 2(c). The extracted IC 
containing P300 responses is shown in Fig. 2(b). It can be 
seen from the figure that P300 can be extracted quite 
effectively using this technique. Fig. 2(c) shows the 
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extracted IC for the non-target event. In order to increase 
the reliability and the accuracy of the algorithm we segment 
the target events into 15 epochs and perform averaging to 
improve the SNR. Fig. 3(a) shows a comparison of the 
resulting P300 from the extracted signal after averaging, for 
both target and non-target events. Using this algorithm, we 
were easily able to separate the target and non-target events 
by the means of a simple linear classifier, as illustrated in 
Fig. 3(b). The linear classifier was trained with 10 target 
and 10 non-target events. We used 30 target and 30 
non-events in the testing phase and achieved a 98.3% 
accuracy. Accuracy can be increased if a more complex 
classifier was used. 

IV. DISCUSSION AND CONCLUSION 

  Our P300 extraction based on cICA gives better 
performance as compared to other methods such as ICA. In 
the conventional ICA, signal is decomposed into several 
components depending on the number of multichannel 
observations and most of them do not contain P300 
information. In our algorithm, cICA converges only on that 
independent component containing P300 information, 
thereby reducing the computation needed to extract P300 
signal without compromising the reliability and accuracy of 
P300 detection and extraction. With a typical Pentium IV 
personal computer, ICA takes about 45 seconds to extract 
all the components whereas cICA run on the same data can 
extract the desired component in only 2 seconds. Hence, we 
can achieve a better communication rate by using, the cICA 
method in a P300-based BCI system which will be tested in 
our future work. 
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