
  

  

Abstract—A Brain Computer Interface (BCI) is a device that 
allows the user to communicate with the world without utilizing 
voluntary muscle activity (i.e., using only the electrical activity 
of the brain). It makes use of the well-studied observation that 
the brain reacts differently to different stimuli, as a function of 
the level of attention allotted to the stimulus stream and the 
specific processing triggered by the stimulus. In this article we 
present a single trial independent component analysis (ICA) 
method that is working with a BCI system proposed by Farwell 
and Donchin. It can dramatically reduce the signal processing 
time and improve the data communicating rate. This ICA 
method achieved 76.67% accuracy on single trial P300 response 
identification. 

I. INTRODUCTION 

As human beings, we possess a wonderful ability of 
communicating with other people in the world. A healthy 
person can express his or her ideas, feelings and desires by 
speech, gesturing or writing. This communicating ability 
makes our daily life easy and enjoyable. However, there are 
some people being locked in their body for different reasons. 
They are fully conscious and aware of what is happening in 
their environment but totally lose their control over any 
voluntary muscles. Locked-in people are not able to 
communicate with other persons via traditional 
communication method. Fortunately, with the development 
of neuroscience and computer science, researchers have 
designed a lot of different brain computer interfaces to help 
locked-in people get their basic communicating ability back 
[1]. 

BCI is a channel established between the human brain and 
computer or other electronic equipments for communication 
and control purpose. To implement a reasonable and 
practicable brain computer interface there are two major 
prerequisites have to be fulfilled: 1. Signals that reliably 
describe several distinctive brain states have to be available, 
2. These signals must be easily extracted and classified 
on-line [2]. Electroencephalography (EEG) signals meet 
these two prerequisites and they can be easily, noninvasively 
recorded, making EEG currently the best candidate for BCI 
system construction. There are two general types of BCI 
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systems that have been developed by researchers using EEG 
as the information carriers and can be described as: Type 1: 
initiative BCI system [3][4][5], and Type 2: passive BCI 
system [6][7]. Initiative BCI system requires the subjects to 
learn to produce self-regulated, stable EEG signal, such as 
alpha or mu rhythm. This learning process will take several 
weeks and since there are only two states, on and off, 
available, it is not effective when performing multiple choices 
tasks. For the passive BCI system, the subjects will be given 
auditory or visual stimuli and generate response (event 
related potential) to those stimuli. The Event Related 
Potential (ERP) can be classified after several signal 
processing processes and used to identify the subjects’ intent. 
One of the well-designed passive BCI systems, known as 
P300 speller, was proposed by Farwell and Donchin [6] in 
1988. This BCI system utilizes the P300 component of the 
ERP to allow locked-in individuals to communicate without 
using any neuromuscular function. The P300 BCI speller 
presents a selection of characters arranged in a 6×6 matrix. 
The subject focuses attention on one of the 36 character cells 
of the matrix in which each row or column is being intensified 
in a random sequence. The row and column intensifications 
that intersect at the attended cell represent the target stimuli, 
which occur with a probability of 1/6. The rare presentation of 
the target stimuli in the random sequence of stimuli 
constitutes an Oddball Paradigm [8] and will elicit a P300 
response to the target stimuli. With proper P300 feature 
selection and classification, the attended character of the 
matrix can be identified and communicated [9]. This BCI 
system has been widely used by researchers with different 
signal processing techniques including Stepwise Linear 
Discriminant Analysis (SWLDA) [9], Support Vector 
Machine (SVM) [10], Matched Filter [11] and Wavelet 
Analysis [12]. Our research is also based on P300 speller. 

Although all the techniques mentioned above demonstrated 
notable performance, Dean J Krusienski et al. [13] conclude 
that SWLDA is the most accurate and practical processing 
method on data collected using the P300 speller paradigm. 
However SWLDA and other techniques share the same 
drawback. They need to average at least several trials to 
remove the background noises and enhance the magnitude of 
P300 response before applying the P300 classifier on EEG 
signal. This time consuming step greatly slows down the 
whole signal processing and therefore makes them not 
suitable for the online P300 classification with single trial. 
We need a fast and reliable processing technique that can 
perform the online P300 analysis accurately for effective 
communication.  It becomes our motivation of designing 
algorithms of P300 analysis based on Independent 
Component Analysis (ICA). 

ICA is a type of blind source separation method which can 
break a mixed signal down to statistically independent 
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components by maximizing their non-Gaussianity. The 
components are related to different features of the signal. We 
can map them and determine which ones are connected with 
P300. In other words, ICA has the ability to reveal the hidden 
features even if they are buried in the background noise. This 
ability makes it possible to detect P300 via a single trial. In 
this article, we discuss an ICA based single trial P300 
classification algorithm that has shown 76.67% accuracy for 
target identification in our study. 

II. METHOD 

2.1   Data Acquisition 
The subject sat upright in front of a P300 speller, focused 

attention on a specified letter of the matrix on the display and 
silently counted the number of times the target character 
intensified, until a new character was specified for selection. 
The EEG was recorded using a cap (Electro-Cap) embedded 
with 16 electrode locations distributed over the entire scalp. 
The EEG was band pass filtered 0.1–60 Hz and amplified 
with an amplifier (20,000×), digitized at a rate of 160 Hz.  

2.2 Data Structure 
The rows and columns were intensified for 75 ms with 100 

ms between intensifications. Because of the delay of P300 
occurrence, the EEG signal segments from 175 ms to 350 ms 
following each intensification are used as our experiment 
segments.  480 segments from each channel including 80 
from target flash (the intensification of row or column that 
contains the desired character) and 400 from non-target flash 
(the intensification of row or column that does not contain the 
desired character) were extracted for the offline analysis.  
 

Table 1: The EEG data structure in our experiment 
Total number of EEG 

segments 480×16 Segment length 175 ms 

Sampling Frequency 160 Hz Number of samples 
in each segment 28 

Intensification 
Duration 75 ms Interval Time 100  

2.3   Processing Flow 
The processing flow used in this work is given in Fig 1. 

 
 
 
 
 

 
 
 

 
Fig 1: The processing flow 

The details of the sub-blocks are discussed in the following 
sections. 

2.4   Preprocessing 
a. All the extracted EEG signals from the 16 channels 

(electrodes) are low pass filtered to remove the 
background noise with cut-off frequency setting as 10Hz. 

b. Before the independent components (ICs) of the EEG 
signals being computed, the observed vector x of EEG 
signals need to be centered and whitened to make its 
components uncorrelated and their variances equal unity. 
The whitening transformation is done by using the 
eigenvalue decomposition (EVD) of the covariance 
matrix ε{xxT}=EDET, where E is the orthogonal matrix of 
eigenvectors of ε{xxT} and D is the diagonal matrix of its 
eigenvalues. The whitening can now be expressed as: 
 

                       xEEDx T2/1~ −=                              (1) 

If we express x as: 
                                            Asx =                                    (2) 

 
where s is the independent components vector and A is the 
linear transformation from s to x, then we have: 
 

                               sAAsEEDx T ~~ 2/1 == −
                  (3) 

 
It can be easily verified that the new transformation matrix 
A~  is orthogonal. Hence the number of parameters needs to 
be estimated reduced from n2 (the number of elements in 
the original matrix A) to about n(n-1)/2 ( A~  contains only 
n(n-1)/2 degree of freedom) [14]. 

2.5   Independent Component Analysis 
Independent component analysis (ICA) is a statistical and 

computational technique for revealing hidden factors that 
underlie sets of random variables, measurements, or signals. 
It is a good solution for the Blind Source Separation (BSS) 
problem. For example, two speakers (S1 and S2) speak 
simultaneously in a room with two recorders (R1 and R2) 
recording their speech at different location in the room. The 
recorded signals, R1(t) and R2(t), can be expressed like this: 
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If we know the values of a11, a12, a21 and a22, we can solve 
these equations for S1 and S2. Unfortunately these weights 
(a’s) are unknowns and these equations can only be solved 
under the assumption that S1 and S2 are independent 
non-Gaussian signals by Independent Component Analysis. 
This is a famous example of “cocktail party” problem. 
Obviously, EEG signal analysis is a type of “cocktail party” 
problem. The electrodes “record” the mixed EEG signal at 
different locations around the scalp. Therefore, it is 
reasonable to apply ICA on EEG signal to identify those 
independent sources and map them to P300. 
 

 
 
 

Preprocessing 

Data 
Acquisition

Lowpass 
Filtering

Centering and 
Whitening

IC computing Feature and IC 
mapping 

Correlating & 
Voting 

4036



  

There are a lot of ICA algorithms available, such as 
Infomax[15], JADE[16] and FastICA[17]. All of them can 
successfully compute the independent components by 
maximizing the non-Gaussianity or negentropy, which is a 
measurement of non-Gaussianity [18], of the ICs. In our 
research, we choose FastICA to perform ICA because it 
converges much faster than other algorithms with high 
reliability. 

We use the average of 400 of preprocessed 175ms EEG 
signals from non-target flash as the “standard non-target 
flash” signal, denoted as xnt.    Similarly, the average of 80 
preprocessed EEG signals from target flash is set as the 
“standard target flash” signal, denoted as xt. By applying 
FastICA, the independents components vector s and the 
mixing matrix A of xt can be computed and expressed as: 
 

                                     ttt sAx =                                        (5) 
 
The vectors in st are used as the “standard independent 
components set” of the EEG signal and At is used as the 
“standard coefficients matrix” showing the activation status 
of the ICs underlying in xt. Here we made an assumption that 
the EEG signal from target flash contains more components 
than those from non-target flash. This is reasonable since the 
EEG signal of target flash is constituted of “background 
noise” and P300 response while the EEG signal of non-target 
flash is constituted of “background noise” only. By 
substituting st and xnt in equation (2), we can solve for Ant that 
shows the activation status of the ICs underlying in xnt. We 
inspected Ant and At and noticed the significant differences 
between them. The coefficients of some ICs are much larger 
in At than they are  in Ant. It implies that some of the ICs in the 
standard ICs set are strongly related to P300 response.  

This conclusion was confirmed by inspecting 480 
individually computed activation matrices A of 80 target and 
400 non-target flashes. Most of them somehow follow the 
“activation pattern” mentioned before. In this work, we 
selected 3 ICs with the largest difference of their coefficients 
in Ant and At as the P300 related ones.  The activation status of 
these 3 ICs in different channels will be used as the feature for 
P300 identification. 

2.6   Correlation Method and Majority Vote Scenario 
In our experiment, 16 ICs were computed and 3 of them, IC 

2, 4 and 11, were considered having strong relation to P300. 
Their “activation pattern” in all the 16 channels of the 
standard target/non-target flash are investigated and recorded 
as the reference pattern of target/non-target flashes. For an 
unknown incoming flash, its activation matrix will be 
computed and the “activation pattern” of IC 2, 4, and 11 will 
be extracted. If it is a target flash, the activation pattern of the 
P300 related ICs should be more similar to the target 
reference pattern, otherwise the activation pattern should be 
more like the non-target reference pattern. We use Pearson 
product-moment correlation coefficient ρ as the measurement 
for the similarity.  
 
                               ),( ricorr=ρ                                    (6) 

 
where i is a vector that represents the activation status of a 
chosen IC of an incoming signal, r is a vector that represents 
the activation status of the same IC in the target or non-target 
reference. According to the distribution of the correlation 
value ρ, we can appropriately choose the threshold value t 
that maximizes the correct target/non-target identification 
rate. We performed 1 and 3 ICs based identification in this 
work. The general classifying criteria can be expressed as: 
 

tif
j

j ≥∑ρ , the incoming signal is a target, otherwise it is a 

non-target.                                                        (7) 
 

where j = 1 or 3, ρj is the correlation value according to the 
j-th P300 related IC. For 1 IC (IC4) based identification, t was 
set as 0.2 and for 3 ICs (IC2, IC4 and IC11) based 
identification, t was set as 0.5. (All the threshold values were 
chosen by maximizing the correct identification rate. 
Different subjects may have different threshold values 
according to their individual ρ distribution.) 

Other than directly summing the correlation values from 
corresponding ICs, we also use 3 P300 related ICs to vote 
according to the following voting criteria: 
If 11 t≥ρ  vote for target, otherwise vote for non-target. 

If 22 t≥ρ vote for target, otherwise vote for non-target. 

If 33 t≥ρ  vote for target, otherwise vote for non-target. 
where ρ1, ρ2 and ρ3 are correlation values that correspond to 
IC2, IC4 and IC11 respectively. t1=0.3, t2=0.2 and t3=0.34. 
The majority vote of them will determine the label of an 
incoming EEG signal. 

III. RESULTS AND DISCUSSION 
The results of our experiment are shown in Table 2, Table 3 

and Table 4. 
 

Table 2: Result of 1 IC (IC 4) based correlation method 
Category Correctly 

Classified 
Incorrectly 
Classified Total Accuracy Error Rate 

Target 21 9 30 70% 30% 

Non-target 19 11 30 63.3% 36.7% 

 
Table 3: Result of 3 ICs (IC 2, 4, and 11) based correlation method 

Category Correctly 
Classified 

Incorrectly 
Classified Total Accuracy Error Rate 

Target 23 7 30 76.7% 23.3% 

Non-target 21 9 30 70% 30% 

 
Table 4: Result of 3 ICs (IC 2, 4, and 11) based voting 

Category Correctly 
Classified 

Incorrectly 
Classified Total Accuracy Error Rate 

Target 23 7 30 76.7% 23.3% 

Non-target 22 8 30 73.3% 26.7% 

 
The 1 and 3 ICs based correlation method and 3 ICs based 
voting scenario were tested by 60 EEG signals including 30 
from non-target flash and 30 from target flash. For 1 IC based 
correlation method, with t = 0.2, we achieved 70% and 63.3% 
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accuracies for target and non-target identification, 
respectively. For 3 ICs based correlation method, with t = 0.5, 
these accuracies increased to 76.67% and 70%, respectively. 
The majority voting scenario provided the best identification 
accuracies of 76.67% and 73.3% for target and non-target, 
respectively. In our research we prefer to reduce the type II 
error because if we fail to identify a target flash, the 
identification process can be repeated till the target 
successfully identified. But if a signal is falsely identified as 
“Target”, this error will not be realized until the final 
character selection. Considering this, we may reduce the type 
II error by decreasing the t value. However, the tradeoff is that 
the processing time will increase due to repetition. The P300 
based single trial ICA algorithm significantly reduces the 
processing time by removing the time consuming step due to 
“averaging” used in other algorithms. Furthermore, our 
algorithm will stop and start the next “Target searching” 
whenever it hits a “Target”. Thus the expecting target 
identifying time is given by ε(t) = 3.5 flashes = 175×3.5 = 
612.5 ms, which is approximately 1/10 of the best processing 
time achieved by SWLDA [19]. Moreover, in the comparison 
of bit rate according to Wolpaw’s definition [20], our method 
achieved 129.4 bits/min while SWLDA achieved 33.8 
bits/min.  

There is still room for improving the processing speed and 
accuracy by optimizing the algorithm. For example, we can 
weigh the voters or modify the voting rule to improve the 
performance of voting. In our experiment, we made an 
assumption that the P300 response occurs between 175 ms 
and 350 ms following a target flash, which is not true for 
some subjects because in some cases P300 shows up in the 
350 ms to 500 ms range. This problem can be solved by using 
appropriate flashing and interval time. The P300 related ICs 
may vary in each individual subject, both in number and 
“pattern”. We need to study more cases to test the robustness 
of this method. We are planning to optimize our algorithm by 
applying appropriate filter during preprocessing, solving the 
non-stationary problem [21] and involving statistical models 
in our future work. Our goal is to further improve the 
accuracy of the single trial P300 analysis algorithm to make it 
more suitable for real-world applications and clinical use. 
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