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Abstract— We examine various independent component anal-
ysis (ICA) digital signal processing algorithms for estimat-
ing the arterial oxygen saturation (SpO2) as measured by a
reflective pulse oximeter. The ICA algorithms examined are
FastICA, Maximum Likelihood ICA (ICAML), Molgedey and
Schuster ICA (ICAMS), and Mean Field ICA (ICAMF). The
signal processing includes pre-processing bandpass filtering to
eliminate noise, and post-processing by calculating the SpO2.
The algorithms are compared to the commercial state-of-the-
art algorithm Discrete Saturation Transform (DST) by Masimo
Corporation. It is demonstrated that ICAMS and ICAMF
perform up to 13% better than DST. PPG recordings are
done with a reflective pulse oximetry sensor integrated in an
Electronic Patch. This system is intended for patients with
chronic heart and lung conditions.

I. INTRODUCTION

Pulse oximeters intended for long-term monitoring of

people living an everyday life with a chronic condition offer

several challenges: 1) Design and construction of small,

discrete, and low-power pulse oximeter devices. 2) Digital

signal processing of photoplethysmograms (PPG) which are

affected by the patient’s motions, a less optimal monitoring

site for the purpose of discreteness and long-term compat-

ibility, and battery powered Light Emitting Diodes (LEDs).

3) Integration of these new technologies which typically

features telehealth solutions into the established health care

system.

We have previously reported the design and development

of an Electronic Patch with integrated reflective pulse oxime-

try based on a novel ring-shaped optical sensor [1], [2],

[3]. The Electronic Patch is shown in Fig. 1. All PPG

measurements reported in this paper are performed with the

Electronic Patch.

Estimating the SpO2 from PPG data which are heavily

distorted by noise and motion artefacts can be done by
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Fig. 1. The Electronic Patch. The patch contains a micro fabricated ring-
shaped silicon backside photodiode with a through chip hole for commercial
surface mounted LEDs. This is packaged inside a hard plastic capsule with
analog, digital, and RF electronics. The capsule is embedded in adhesive
material as shown in the figure. The patch measures 88 mm by 60 mm and
is 5 mm thick. The weight is 15.9 grams.

advanced digital signal processing. The commercial state-

of-the-art, Discrete Saturation Transform (DST) by Masimo

Corporation [4], [5], is often used in clinical pulse oximeters.

To benefit most from the above mentioned category of low-

power pulse oximeters algorithms which are better at noise

and motion filtering are needed.

Signal processing of PPG data using independent compo-

nent analysis (ICA) has been reported by several authors [6],

[7] as a promising technique for motion artefact reduction.

These papers do not describe the problem of estimating the

SpO2 nor do they present a comparison with the DST algo-

rithm. In this paper we evaluate four different ICA algorithms

with respect to estimating SpO2 from PPG data recorded on

resting subjects (i.e. not motion distorted) but recorded with

the Electronic Patch under low-power conditions (the LED

driving current is 5 mA). It is known that data is perturbed

with electronic noise and the signal to noise ratio is low

due to the low LED driving current. A sample of a raw

PPG recording is shown in Fig. 2. The ICA algorithms are

compared to the DST algorithm. Data and Matlab functions

are online available from [8]

Most authors focus on the FastICA algorithm [9], [10], but

there are several other ICA algorithms such as Maximum

Likelihood ICA (ICAML) [11], [12], [13], Molgedey and

Schouster ICA (ICAMS) [12], [14], [15] and Mean Field ICA
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Fig. 2. A five seconds section of raw PPG data. The signal is noisy but
the pulsating nature due to the heart beat is easily recognized.

(ICAMF) [16], [17]. The various ICA algorithms are based

on different assumptions regarding the statistical properties

of the source signals and works by optimizing different pa-

rameters such as autocorrelation and probability distributions

in the attempt to separate sources and noise signals.

The hypothesis of this paper is that the quality of the

separated PPG signals and consequently the SpO2 prediction

depends critically on the choice of ICA algorithm. Motivated

by this we present a comparison of the mentioned four

different ICA algorithms and the DST algorithm. We evaluate

the algorithms by comparing the estimated SpO2 values with

reference values obtained by a commercial pulse oximeter

for the intensive care unit.

II. DISCRETE SATURATION TRANSFORM

DST is based on the assumption that the measured signals

can be described as a sum of a desired PPG signal s(t) and a

noise signal n(t) due to motion artifacts. Masimo [4] defines

the system as

xir(t) = s(t) + n(t) (1)

xr(t) = ras(t) + rvn(t) (2)

with xir(t) and xr(t) being the signals from the infrared

and red recordings respectively and ra is the arterial ratio

corresponding to the arterial saturation and rv is the ratio

of venous, or non-arterial, components. The method is based

on removal of the noise term n(t) by the use of Adaptive

Noise Cancelation (ANC) [18]. ANC requires a reference

of the noise signal which is similar to the undesired noise

signal. Such a reference noise signal is not available from

pulse oximetry and Masimo therefore defines a reference

noise signal n′(t) as a weighted difference of the normalized

measured signals

n′(t) = xr(t) − rxir(t). (3)

By inserting (1) and (2) in (3)

n′(t) = ras(t) + rvn(t) − r(s(t) + n(t)) (4)

= (ra − r)s(t) + (rv − r)n(t). (5)

It is seen from (5) that when ra = r the reference noise signal

n′(t) only contains the weighted noise of the measurements.

The measured signal from the red LED xr(t) is applied as

the input to the ANC with the reference signal n′(t) and the

desired output of the ANC is the noise free PPG-signal s(t).
The coefficient r is found iteratively by trying all values of

r corresponding to all SpO2 levels from 0-100% in steps of

e.g. 1%. The power of the output signal from the ANC is

calculated for each reference signal. This results in a power

spectrum for the values of r that will have two peaks; one

at r = rv and one at r = ra where the latter is the desired

ratio. The implementation of DST used for this paper uses

a recursive least squares (RLS) adaptive FIR filter of order

128. It is found that this order gives a desirable performance

and increasing the order will only slow down the algorithm.

The coefficient r is increased by a step size of 0.01 to ensure

the resolution in SpO2 is less than 1%.

III. INDEPENDENT COMPONENT ANALYSIS

The general ICA model is formulated as

X = AS (6)

where X is a matrix of observed multiple signal samples, A

is a mixing matrix, and S is a matrix of independent source

signal samples. The aim is then to estimate A and S.

By assuming each of the pulse oximetry recordings con-

tains a component representing the PPG signal s1(t) and an

independent noise component s2(t) the ICA model for pulse

oximetry is given by the 2-by-2 linear mixing system1

xr(t) = a11s1(t) + a12s2(t) (7)

xir(t) = a21s1(t) + a22s2(t) (8)

where aij are the coefficients determining the elements of the

mixing matrix A in (6). The optical ratio is then estimated

by the ratio of the mixing coefficients of the PPG source

signal

R =
a11

a21

. (9)

A. FastICA

FastICA works by maximizing the negentropy of the

independent source signals. Negentropy can be interpreted as

a measure of non-Gaussianity2. The main advantage of this

algorithm is due to its simple fixed-point iteration scheme.

B. Maximum Likelihood ICA

ICAML separates the independent identically distributed

source signals by maximizing the likelihood of the mixing

matrix. To use the maximum likelihood approach the score

function associated with the source prior distribution is

required.

1An extended model is provided in (10). See also the future work section
below.

2It is well-known that white Gaussian distributed source signals can not
be separated, [19].
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C. Molgedey and Schouster ICA

ICAMS is based on dynamic decorrelation and requires

that the sources have different autocorrelation functions. The

mixing matrix is estimated by maximizing the difference in

autocorrelation of the source signals.

D. Mean Field ICA

ICAMF is a Bayseian probabilistic method for solving the

ICA problem and is rather flexible with respect to specifica-

tion of constraints and prior assumptions. The model differs

from the general ICA model as it assumes the observed

signals X are generated with an additive white noise source

E, thus

X = AS + E. (10)

In the present context this is a reasonable assumption since it

is unrealistic that the noise signals picked up in the red and

infrared channels are identical except for scaling, as assumed

in (7). The noise E is assumed to be Gaussian with zero mean

and covariance Σ. The noise covariance matrix can further

be constrained to be isotropic or diagonal for same noise

variance on the observations or individual noise variance for

each observation, respectively.

IV. CLINICAL METHODS AND MATERIALS

We perform non-invasive self testing on healthy subjects.

The subject is seated at rest and the oxygen saturation

measured on the third digit of the right hand by a pulse

oximeter, Datex-Ohmeda AS/3 Compact Patient Monitor,

Pulse Oximeter. The Electronic Patch is placed on the skin

over the third digit of the left hand. The PPG signals are

measured continuously and the reference SpO2 value is read

of every 30s. The sampling frequency of the PPG data is

fs = 200Hz. The total length of the PPG sequences for the

three subjects and the starting and ending reference SpO2

levels are given in Table I.

The subjects re-breath in a closed circuit in order to

lower the oxygen saturation as illustrated in Fig. 3. At the

initiation of each test the circuit is filled with approximately

50 - 70 liters of atmospheric air. Carbon dioxide CO2 is

absorbed from the circuit by exhaling through a filter of

calcium hydroxide, Soda Lime (Dräger). The measurements

are initiated by a few deep inspirations of 100% oxygen

and then the breathing is changed to the closed circuit.

The subject now breath continuously in the closed circuit.

A decline in oxygen saturation is measured as the oxygen

concentration in the circuit decreases.

Prior to the investigations it is agreed to end the testing

when the oxygen saturation reached 75% or earlier if the

subject felt uncomfortable.

V. SIGNAL PROCESSING

The optical ratio R is calculated for signal windows of

30s corresponding to the reference measurements. For each

window the signal processing described in the following is

applied.

Air
container
50-70 L

CO  absorber2

Fig. 3. To lower the oxygen saturation a closed circuit is used. The subjects
re-breath air from a container through a carbon dioxide filter of calcium
hydroxide, Soda Lime (Dräger). The SpO2 is lowered from 100% to 75%
on the average of 16 min.

TABLE I

LENGTH OF SIGNALS AND START AND END REFERENCE SP O2 LEVELS

FOR THE THREE SUBJECTS.

Subject Length (s) SpO2 start (%) SpO2 end (%)

1 760 98 74
2 1111 100 86
3 1020 100 70

A. Pre-processing and estimation of R

The PPG signals are normalized by subtracting the DC-

component and dividing by the DC-component. This is done

to scale the recordings from each subject to the same range.

To avoid high frequency electrical noise and low frequency

noise components bandpass filtering is applied. It is found

that the best performance is achieved by a 8th order IIR

(Butterworth) filter. The cutoff frequencies are optimized

for each algorithm by evaluating the estimates for range

of cutoff frequencies using the evaluation scheme explained

in the following section. The cutoff frequencies resulting in

smallest error for each algorithm is then chosen. The cutoff

frequencies are given in Table II as lower cutoff frequency

fl and higher cutoff frequency fh. To avoid distortion due to

filter settling time an overlap of 4s is added to the front of

the signal windows before filtering and removed again after

filtering. After normalization and bandpass filtering R or ra

is estimated by ICA or DST respectively.

B. Evaluation Scheme

To evaluate the estimates of R a calibration curve that

relates the R-values to the SpO2 in % is needed. From the

theory of pulse-oximetry [20] it is known that the calibration

curve is on the form

SpO2 =
a + bR

c + dR
. (11)

However, in the important SpO2 range from 70% to 100%

a linear approximation to the calibration curve can be used.

It follows from derivation using Beer-Lambert’s law that the

gradient of the linear approximation should be negative [20].

To obtain a calibration curve that does not depend heavily

on the available data set a training and test set evaluation

scheme is applied: The R-estimates are divided into a

training and test set consisting of values from two and one

subjects respectively. A calibration curve is calculated from

the training set by using the leave-one-out method. One

estimate is left out and a linear model is fitted to the rest
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TABLE II

BANDPASS FILTER CUT-FREQUENCIES

Algorithm fl (Hz) fh (Hz)

DST 0.9 3
FastICA 1 3
ICAML 1 2
ICAMS 1 3
ICAMF 0.8 3

of the estimates. This is repeated for all estimates in the

training set and the mean of the coefficients of all fitted

calibration curves is used as a final linear calibration curve

for testing. The obtained calibration curve is used to predict

test set SpO2 values from R-values. Finally, the test error is

calculated as the Euclidean difference between the estimated

and the reference measurement of SpO2. The procedure is

repeated for all three combinations of training and test set.

The average error is then calculated for each algorithm.

The signal processing can be summarized into five steps:

1) Normalization

2) Bandpass filtering

3) Estimation of R or ra

4) Estimation of calibration curve

5) Estimation of SpO2

VI. RESULTS

In Fig. 4 is shown the result for the DST algorithm as the

reference SpO2 values versus the estimated arterial ratios,

ra. It is seen from this graph that the algorithm gives a

calibration curve and that the results from the three subjects

fall within the same range. The average error is found to be

3.0%.

In Fig. 5, 6, 7, and 8 are shown the results for the four

ICA algorithms. From Fig. 5 it is seen that few estimates are

available as the FastICA algorithm fails to converge for parts

of data. The estimated calibration curve is therefor weaker

than what is obtained with DST. The ICAML, ICAMS, and

ICAMF algorithms all give a correct calibration curve. The

ICAMS and ICAMF algorithms give results that are more

similar to the result from the DST algorithm compared to

the ICAML algorithm. For the DST, ICAMS, and ICAMF

the linear fit is correct in the range 100%-80% but fails in

the range 80%-70%.

ICAMF allows one to use several prior distributions for the

sources and we found that a bi-Gauss distribution is the best

choice for the PPG-signals. The mixing matrix is constraint

to be positive as R should be positive. Further, we found

that a configuration with a diagonal covariance matrix for

the noise term gave the best results.

The average Euclidean error and the relative error com-

pared to the DST error are listed in Table III for all

algorithms. With respect to these measures it is seen that

FastICA and ICAML performs 27% and 13% worse than

DST, respectively. Both ICAMS and ICAMF performs better

than DST with relative improvements of 3% and 13%,

respectively.
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Fig. 4. Calibration curve and estimates obtained using DST. It is seen that
the linear model fits most of the estimates, but some estimates could be
considered as outliers.
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Fig. 5. Calibration curve obtained using FastICA. It should be noted that
a fewer estimates are seen. This is due to the algorithm not converging for
parts of the data.
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Fig. 6. Calibration curve and estimates obtained using ICAML. Compared
to the DST algorithm the estimates deviates more from the calibration curve.

4042



0 0.5 1 1.5 2 2.5 3

70

75

80

85

90

95

100

Optical ratio R

O
x
y
g
e
n
 S

a
tu

ra
ti
o
n
 S

p
O

2
 (

%
)

 

 

Calibration curve

Subject 1

Subject 2

Subject 3

Fig. 7. Calibration curve and estimates obtained using ICAMS. The
performance is similar to the DST algorithm. Notice the estimates below
80% do not fit the linear model approximation.
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Fig. 8. Calibration curve and estimates obtained using ICAMF. The
performance is similar to the DST algorithm, but the algorithm appears
to be more robust when considering possible outliers.

VII. DISCUSSION

The purpose of this work is to study ICA algorithms by

comparing them with respect to each other and to the DST

algorithm. The purpose is not to obtain a calibration curve for

future use. Therefore the quality of the reference data is of

less importance and we choose to use a non-invasive method

that does not require a clinical protocol (by Danish law).

More precise reference data could be obtained by collecting

arterial blood samples from which the oxygen saturation can

be found accurately by a blood gas analyzer.

The non-invasive method we have used resulted in an

error of 3.0% for the DST algorithm. A commercial pulse

TABLE III

MEAN ERROR FOR EACH ALGORITHM AND ERROR RELATIVE TO DST.

Algorithm SpO2 error Error relative to DST

DST 3.0 -
FastICA 3.8 27%
ICAML 3.4 13%
ICAMS 2.9 -3%
ICAMF 2.6 -13%

oximeter by Masimo Corporation has a specified accuracy

of 2% [21], the obtained reference data must therefore be

considered useful.

The obtained calibration curves suggest that the linear

model approximation is good in the SpO2 range of 80%

to 100% whereas below this range a nonlinear relation is

a better choice.

VIII. CONCLUSION AND FUTURE WORK

A. Conclusions

We have successfully demonstrated ICA algorithms in the

application of estimating the arterial oxygen saturation by

pulse oximetry. Four ICA algorithms have been evaluated

and compared to DST. The four algorithms did perform

differently. The ICAMF is found to give the best results with

an relative improvement over the DST algorithm of 13%.

The FastICA algorithm failed to converge for parts of the

data and showed a decline of 27% compared to DST. The

ICAMS showed a relative improvement of 3% over DST and

the ICAML showed a decline of 13% compared to DST.

It can be concluded that ICA can be used for calculating

SpO2 when the ICA problem is solved using the right con-

straints. We conclude that the difference in autocorrelation

of the source signals and the bi-Gaussian distribution of the

PPG signal and individual noise on the red and infrared

recordings are the useful constraints.

The accuracy of the SpO2 values do indeed depend on the

choice of ICA algorithm, and we have found that the ICAMF

is the best choice.

B. Future Work

Motion artifacts are serious noise component in the

recorded signals. We believe that ICA models could provide

a good framework for handling such problems which is

suggested by initial experiments. We consider a more general

framework using a linear state-space based model suggested

in [22] which allows for more flexible mixing and prior

source models. In addition, the model can handle the so-

called underdetermined case, i.e. more source signals than

recorded signals. This is useful for modeling different noise

sources which could have very different dynamics.
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