
 

  

Abstract— This paper presents a method to explore the 
flexibility of channel reduction in k-domain parallel 
imaging with massive arrays to improve the computation 
efficiency. MCMLI and GRAPPA are k-domain 
reconstruction methods that use a neighborhood of PE 
columns, FE line(s) and all channels in the interpolation 
kernels. For massive array which contains a large 
number of element coils computation cost can be a 
significant problem. In this paper, channel selection and 
reduction is performed according to the correlation 
between channel images for individual channel 
reconstructions. Simulation results show that the 
proposed channel reduction algorithm can achieve 
similar or improved reconstruction quality with 
significantly reduced computation for massive arrays 
with localized sensitivity. 

I. INTRODUCTION 
artial parallel imaging (PPI) MRI using coil arrays and 
multiple receivers  can speed up data acquisition time by 

acquiring a reduced set of data [1-5,8,9,11]. Many approaches 
have been proposed to reconstruct original object image 
utilizing sensitivity information of multiple channels.  

One criterion that can be used to categorize these methods is 
whether they ask for an accurate estimate of channel 
sensitivities. Methods such as sensitivity encoding (SENSE) 
[9] and simultaneous acquisition of spatial harmonics 
(SMASH) [2] belong to the first category that needs prior 
knowledge of channel sensitivity. While methods such as 
AUTO-SMASH [3], variable density AUTO-SMASH (VD- 
AUTO-SMASH) [4], generalized auto-calibration partially 
parallel acquisitions (GRAPPA) [5] and multicolumn 
multiline interpolation (MCMLI) [8] rely on autocalibration 
data and do not need sensitivity information. 

In SENSE, the reconstruction problem can be formulated as 
solving a matrix inverse problem. While in MCMLI, missed 
data points of all channels are reconstructed using data 
interpolation. In addition, in MCMLI, to reconstruct one 
channel, data points of all channels are used in the 
interpolation. Hence the computation costs of these two 
methods are approximately proportional to the number of 
channels cN and 2

cN  respectively [11,12]. In PPI with 
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massive arrays [7] which contains a large number of element 
coils, computation cost of parallel reconstruction can be a 
significant.  

Several approaches have been proposed to reduce the 
computation cost for massive arrays with localized 
sensitivity. For SENSE, the sensitivity matrix can be 
truncated, or the coil set can be reduced, to a smaller size 
using singular value decomposition [10,12]. However, in 
localized array, due to the incomplete local information 
contained in each channel, all channels have to be kept and 
used for reconstruction.  

The optimal kernel size, number of neighbor blocks, 
columns and channels, is dependent on many factors such as 
FOV, coil array configuration, sub-sampling direction and the 
width of coil sensitivity. A method that tried to obtain the 
optimal kernel by decomposing of a larger kernel [6] can be 
employed to reduce MCMLI computation cost in massive 
array. However, as the coil sensitivity used in massive array is 
localized and the acquired data of each channel only contains 
information of the object around coil center, a more straight 
forward way to reduce computation cost is to set the kernel of 
MCMLI cover only a small set of channels in neighborhood, 
as original proposed in [13] and recently further reported in 
[14,15]. 

In this work, it is shown that this small kernel can achieve a 
reconstruction quality almost the same as that of a kernel 
contains all channels, but with significantly reduced 
reconstruction time. A process of selecting neighbor channels 
for MCMLI kernel is based on the correlation between the 
source channel and the target channel.  

II. MATERIALS AND THEORY 
1. Reconstruction Using MCMLI 
In general, MCMLI is an improved data reconstruction 

method for generalized autocalibrating partially parallel 
acquisition which employs not only neighbor data points 
along PE direction but also those along the FE direction. 

Received k-space signal is noted as S , the k-space 
coordinate noted as ( , )y xk k and the sampling intervals along 

yk and xk axis noted as ykΔ and xkΔ , and the process of 
MCMLI can be represented by [8]: 
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(a) Inaccurate correlation due to aliasing effect 

 
(b) Correlation error is small with the help of ACS 

Fig.1 Illustration of inaccurate correlation problem which is 
addressed with the existence of ACS 

where j represents the - thj channel, R is the acceleration 
factor, and ( 1,..., )r r R= is the relative location of current data 
point being interpolated inside its block. bN is the number of 
neighbor blocks and ,l rH H are number of neighbor columns 
used on each side. L is the total number of channels. ,j rW

refers to the net weights of the r th- net weights to target 
channel j .  

Equation (1) represents relation of one data and its 3-D 
neighbor data points. A general form for the r th- net can be 
written as, 

, 1,.., 1target source r r R= = −S S W   (2) 
where rW is the weight vector of length 2 ( )b l rL N H H× × + , 

targetS  is the unknown data and sourceS  is the sampled data. 
MCMLI has two steps: weights calibration and interpolation. 
In the first step, auto-calibration signals (ACS) fully sampled 
PE lines in central k-space are used as training data to 
calculate weight vector rW ( targetS and sourceS are known then 

LMS solution of rW is obtained). In the following step, all 
sub-sampled missing points belonging to the r th- net are 
interpolated using obtained weight vector ( targetS is 
unknown). In conclusion, this method reconstructs missed 
data of each channel using data from all the channels. 

2. Channel Reduction Utilizing Sensitivity Locality 
 In MCMLI, the weight vector has a length proportional to 

number of total channels. This may lead to huge computation 
cost in massive arrays due to the large number of channels. In 
the case that channel sensitivity is localized compared to 
FOV, data of each channel contains information of only a part 
of the object. Two far distanced channels contain little 
information of each other and interpolating one with the data 
from the other will only introduce more noise. Thus, channel 
reduction is possible to be performed using this locality of 
channel sensitivity. 

The idea of channel reduction is to keep only a small set of 
neighbor channels which are better correlated with the 
channel being reconstructed. Irrelevant channels with little 
information will be dropped and contribute nothing. The 
reconstruction of using this small set of channels is expected 
to achieve the same quality as using all. From another 
prospective of view, when using all channels to reconstruct 
one, those irrelevant channels are more likely to be assigned a 
set of coefficients of smaller value and can be almost taken as 
dropped.  

Assume that on average cN  channels were selected for 
each channel. The total computation and memory complexity 
will be reduced by a factor of  (( / ) )p

cO N C  where C is the 
total number of channels and P is a power number depending 
on whether directly matrix inversion or conjugate gradient 
method is used to calculate the interpolation coefficients.  
   Channel reduction number cN  is mainly determined by 
SNR and accelerating factor. In general, keeping all other 

factors unchanged, an increase of accelerating factor needs at 
least the same amount of increase of cN  in reconstruction.  

3. Correlation Estimate 
As stated above, correlation between channels are used as 

criteria to perform channel reduction. By acquiring prior fully 
sampled data, channel sensitivities can be estimated and then 
correlations are obtained. Or simply, we can calculate the 
correlation of individual channel images instead. However, 
this procedure requires additional data acquisition.  

In PPI, to skip this step, we consider to use individual 
channel images which are aliased due to down sampling of 
k-space data. The aliased object in channel images can lead to 
inaccurate correlation estimation as illustrated in Fig.1 (a). 
But for MCMLI reconstruction, correlation estimate 
procedure can be incorporated correctly into the 
reconstruction step with the help of ACS. ACS are fully 
sampled data located in the central k-space and possesses 
most of the image power. So in channel images of a down 
sampled data with ACS, aliasing effect is only from high 
frequency component of lower energy as shown in Fig.1 (b). 
Then the correlation estimate error caused by aliasing effect 
can be omitted. 

Correlation coefficient between aliased channel images is 
defined as: 

( , ) cov( , ) / ( )m n m nm n I Iρ σ σ=  (3) 
where ,m n  are channel indices,  and m nσ σ are standard 

deviations of each image. Then an empirical threshold was 
used to select a subset of coils that will be used in 
reconstruction of each individual channels. 

III. METHOD AND RESULTS 
K-space sub-sampling and reconstruction with MCMLI 

were performed using both simulated data and in vivo array 
imaging data. Phase encoding lines were partially decimated 
to simulate the PPI procedure and then reconstructed. This 
entire MCMLI reconstruction procedure was performed 
offline using MATLAB (Math Works, Natick, MA). 
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(a) 

 (b) 
Fig.4 Reconstructions from simulated data using MCMLI with 32 ACS 
lines, 2 blocks and 3 columns with four different neighboring channels 
(3, 7, 15, and 31), Rr = 2. (a) Reconstructions. (b) Error images  

 

 
Fig.2 Illustration (a) coil and imaging plane and (b) simulated coil 
sensitivity profile at three different depths 
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Simulated data was generated using a 64-element array of 
planar pair coils [7] as shown in Fig.2 (a). Channel sensitivity 
of each channel was calculated according to Biot-Savart 
equation. K-space data was then obtained by modulating a 
standard Shepp-Logan phantom with generated array 
sensitivities. Accelerating direction was along the PE 
direction aligned with array. Several sets of data with 
different depth as shown in Fig.2 (b), namely different 
sensitivity width, were used to test effects of correlations on 
channel reduction.  

 In this simulation, resolution of sensitivity and the 
Shepp-Logan phantom was 256∗256. White Gaussian noise 
was added to k-space data and the SNR was 20dB. 32 central 
PE lines are kept fully sampled as ACS. Aliased individual 
channel images of each channel were obtained directly by 
applying inverse Fourier transform of sub-sampled k-space 
data.  

Correlation coefficients matrix of aliased channel images 
using data generated from sensitivity #1 was shown in Fig.3. 
Inaccurate correlation estimated caused by aliasing was 
small.  

One set of simulation results was shown in Fig.4. 
Reconstructions and errors using different channel reduction 

cN  were provided. A correlation threshold of 0.9 was used 
for channel reduction and 5 channels were kept. As shown in 
Fig.4 (b), reconstruction error cannot be further suppressed by 
increasing channels more than 5. A proper threshold depends 
on the SNR of acquired data and usually can be set to a 
smaller to ensure lowest reconstruction error being achieved.  

Two sets of in vivo fully sampled data with different array 
configuration were tested. One set was acquired from a 
64-channel linear array and the other from an 8-channel 

circular array. The channel sensitivity of 64-ch linear array 
was also localized, thus channel reduction to a small number 
could be achieved. Reconstructions were shown in Fig.5 (a), 
no obvious reconstruction difference can be observed 

 
Fig.3 Correlation coefficient matrix of a 64-ch receive system. 
Note that significant correlation exists only between close 
neighbor channels (5-7 in this example). 
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between cN =3 and cN =31. Reconstructions of data acquired 
from a circular array were shown in Fig.5 (b), only the single 
channel reconstruction cN =1 had obvious aliasing effect. As 
long as some channel members are low correlated in array, 
channel reduction can be applied for many array 
configurations.  

IV. CONCLUSION 

A method to significantly reduce the computation burden in 
the k-domain parallel imaging with large receive arrays was 
presented. By utilizing localized sensitivity, the method 
adaptively selects a small set of neighbor channels in the 
GRAPPA/MCMLI interpolation models for each individual 
channel.  In the simulated and in-vivo experiments, 
significant computation saving was obtained with minimal 
reduction of reconstruction quality. 
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(a)  Real data acquired using a 64-ch linear array receiver system. 

 

 

 
(b) Real data acquired using an 8-ch circular array receiver system. 
Fig.5 Reconstructions of real data acquired from two different array 
configurations. Both data sets were down sampled at Rr=2 and 
reconstructed using different channel reductions. No significant 
decrease of reconstruction quality was observed for more channel 
reduction. 

 
Fig.6 Time cost of reconstruction of 64-ch real data versus channel 
reduction at different reduction factors. Time cost is proportional to 
the number of channels adopted in reconstruction. 
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