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Abstract— Design of RF pulses for parallel excitation using
phased array transmit coils in MRI requires the B

+

1 maps
that are estimated from B

+

1 mapping experiments. This paper
characterizes the effects of B

+

1 mapping errors on the resulting
excitation pattern using a small perturbation analysis based
on linearization of the Bloch equation. The accuracy of the
proposed perturbation analysis is validated by Bloch equation
simulations based on experimental B

+

1 maps. The perturbation
analysis builds a transparent connection between the B

+

1

mapping errors and the resulting excitation errors, and can
be used to study the robustness of the designed RF pulses to
B

+

1 mapping errors. The proposed method may also supply
useful metrics for designing RF pulses that are robust to B

+

1

mapping errors.

I. INTRODUCTION

In MR imaging, radio frequency (RF) pulses are used to

flip the bulk magnetization. Frequency-selective RF pulses

can be made spatially selective when they are applied

in the presence of a gradient field. The most commonly

used selective RF pulses are 1D slice-selective RF pulses.

Multidimensional spatially-selective RF pulses (or simply

multidimensional RF pulses) have many applications such as

reduced field-of-view (FOV) imaging [1] and B+
1 inhomo-

geneity correction in high field MR imaging [2]. However,

the multidimensional RF pulses are often very long (20-100

ms) [3], which significantly limit their practical utility. Re-

cently parallel excitation [4], [5] has emerged as a promising

approach to shorten multidimensional RF pulses by driving

phased array transmit coils simultaneously.

Most RF pulse design methods [4], [5], [6], [7] in parallel

excitation require knowledge of sensitivities of phased array

transmit coils (or simply B+
1 maps), whose accuracies are,

in practice, often limited by signal-to-noise ratio (SNR) and

resolution of B+
1 mapping data and modeling error of B+

1

mapping methods. It is, therefore, important to characterize

the effects of B+
1 mapping errors on the resulting excitation

pattern. Suppose there are L phased array transmit coils.

The question addressed in this paper is: given a set of RF

pulses {b1,l(~r)}
L
l=1 designed based on estimated B+

1 maps

{Sl(~r)}
L
l=1, what is the excitation error if the actual B+

1 maps

are {Sl(~r)+∆Sl(~r)}
L
l=1? More specifically, let ~Md(~r, t) and

~Ma(~r, t) be the solution of the Bloch equation (ignoring the
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relaxation):




Ṁx(~r, t)

Ṁy(~r, t)

Ṁz(~r, t)



 =γ





0 ~G(t) · ~r −B1,y(~r, t)

−~G(t) · ~r 0 B1,x(~r, t)
B1,y(~r, t) −B1,x(~r, t) 0





×





Mx(~r, t)
My(~r, t)
Mz(~r, t)



 , (1)

for a given gradient field ~G(t) · ~r and RF fields B1(~r, t) =
∑L

l=1 b1,l(t)Sl(~r) (the designed RF field) and B1(~r, t) =
∑L

l=1 b1,l(t)[Sl(~r) + ∆Sl(~r)] (the actual RF field) respec-

tively, what is the difference between ~Md(~r, T ) (the designed

excitation pattern) and ~Ma(~r, T ) (the actual excitation pat-

tern), where T is the pulse length.

The problem is trivial if the Bloch equation has a closed-

form solution. However, this is not the case for a general

B1(~r, t). We could solve the Bloch equation numerically

for a given pulse, but such an approach doesn’t provide

useful insights for the general case. In this paper, we use a

perturbation analysis developed by Grissom [8] for RF pulse

design to address our problem.

The remaining of this paper is organized as follows.

First, a small perturbation analysis of the excitation error

∆ ~M(~r, T ) = ~Ma(~r, t)− ~Md(~r, t) is presented. The accuracy

of the perturbation analysis is then discussed based on

numerical solution of the Bloch equation.

II. PERTURBATION ANALYSIS

For the convenience of analysis, we make use of the spin-

domain Bloch equation [9]. More specifically, the Cayley-

Klein parameters (or simply spinor parameters) α and β of

the designed excitation pattern are calculated by solving the

following differential equations:
[

β̇

α̇∗

]

=
iγ

2

[

~G · ~r, B∗

1

B1, −~G · ~r

] [

β

α∗

]

, (2)

where B1(~r, t) =
∑L

l=1 b1,l(t)Sl(~r), “∗” denotes conjugate

transpose, and the depedence of variables on spatial location

~r and time t are dropped for simplicity of the expression.

Given the initial condition of the magnetization

[Mxy(0),M∗

xy(0),Mz(0)]T (“T” denotes transpose), at

the end of the RF pulse, the designed magnetization is

calculated by:




Mxy(T )
M∗

xy(T )
Mz(T )



 =





(α∗)2 −(β∗)2 −2α∗β∗

−β2 α2 −2αβ

α∗β αβ∗ αα∗ − ββ∗









Mxy(0)
M∗

xy(0)
Mz(0)



 ,

(3)
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where Mxy = Mx + iMy is the transverse component of the

magnetization, and α and β are evaluated at time T .

Denote the actual RF field as B1(~r, t)+∆B1(~r, t), where

∆B1(~r, t) =
∑L

l=1 b1,l(t)∆Sl(~r) is considered as a per-

turbation term on the RF field B1(~r, t). Then the spinor

parameters of the actual excitation pattern are calculated by

solving the following differential equations:
[

β̇ +
˙̃
β

α̇∗ + ˙̃α∗

]

=
iγ

2

[

~G · ~r, B∗

1 + ∆B∗

1

B1 + ∆B1, −~G · ~r

] [

β + β̃

α∗ + α̃∗

]

,

(4)

where α̃ and β̃ are the corresponding perturbations on the

spinor parameters.

Subtracting Eq. (2) from Eq. (4), we obtain the following

differential equations to calculate the perturbations of the

spinor parameters:
{

˙̃
β = iγ

2

(

~G · ~rβ̃ + B∗

1 α̃∗ + ∆B∗

1α∗ + ∆B∗

1 α̃∗

)

,
˙̃α∗ = iγ

2

(

B1β̃ + ∆B1β + ∆B1β̃ − ~G · ~rα̃∗

)

.
(5)

However, Eq. (5) in general does not have a closed-

form solution, and therefore supplies few useful insights for

analysis. To get an approximate closed-form solution of the

perturbations of the spinor parameters, we follow a derivation

in [8], where the same solution is used for designing RF

pulses. Suppose the difference between the actual RF field

and the designed RF field, i.e. ∆B1(~r, t), is relatively small

compared with the designed RF field B1(~r, t), we ignore

all the second order terms: ∆B∗

1 α̃∗ and ∆B1β̃. We further

assume B∗

1 α̃∗ and B1β̃ are relatively small compared with

other terms, and therefore ignore these two terms in Eq. (5),

which yields the following decoupled differential equations:
{

˙̃
β = iγ

2

(

~G · ~rβ̃ + ∆B∗

1α∗

)

,
˙̃α∗ = iγ

2

(

∆B1β − ~G · ~rα̃∗

)

.
(6)

Note that the initial conditions of Eq. (6) are: β̃(~r, 0) =
0, α̃(~r, 0) = 0, because no RF field is applied at t = 0. We

finally obtain a closed-form solution of β̃ and α̃. At the end

of RF pulse, the closed-form solution is given by:
{

β̃(~r, T ) ≈
∑L

l=1 ∆S∗

l (~r)cl(~r, T ),

α̃∗(~r, T ) ≈
∑L

l=1 ∆Sl(~r)dl(~r, T ),
(7)

where denoting ~k(t) = −γ
∫ T

t
~G(s)ds known as the exci-

tation k-space trajectory, cl(~r, T ) and dl(~r, T ) are defined

as:
{

cl(~r, T ) ,
iγ
2

∫ T

0
b∗1,l(t)α

∗(~r, t)e−
i
2
~r·~k(t)dt,

dl(~r, T ) ,
iγ
2

∫ T

0
b1,l(t)β(~r, t)e

i
2
~r·~k(t)dt.

(8)

Once the perturbations of the spinors parameters are

calculated, we can then calculate the perturbation of the

excitation pattern based on Eq. (3). As a specific case, for

the excitation RF pulse, where the initial state of ~M is

normalized to be [0, 0, 1]T, the perturbation of the transverse

component of the excitation pattern is given by:

∆Mxy(~r, T ) ≈ −2
∑L

l=1

[

α∗(~r, T )c∗l (~r, T )
+β∗(~r, T )dl(~r, T )

]

∆Sl(~r),
(9)

where second order perturbation terms are dropped.

In summary, in order to calculate the perturbation of the

excitation pattern, we need to know the difference between

the actual and the estimated B+
1 maps, i.e. ∆Sl(~r), and the

unperturbed spinor parameters α(~r, t) and β(~r, t), which can

be calculated by solving the Bloch equation numerically with

a given gradient field ~G(t)·~r, designed RF waveforms b1,l(t)
and estimated B+

1 maps Sl(~r).

III. VALIDATION

The accuracy of the perturbation analysis replies on how

well the two assumptions we make in the derivation of

Eqs. (7) and (8) are satisfied. On the one hand, the accuracy

of the perturbation analysis depends on the accuracy of the

estimated B+
1 maps since we ignore the second order terms

∆B∗

1 α̃∗ and ∆B1β̃ in Eq. (5) by assuming the perturbation

of the RF field ∆B1(~r, t) caused by B+
1 mapping errors is

relatively small with respect to the RF field B1(~r, t). On

the other hand, with a fixed gradient field and fixed pulsed

length, the accuracy of the perturbation analysis will also

depends on the flip angle since the contribution of the ignored

terms B∗

1 α̃∗ and B1β̃ in Eq. (5) will increase as the flip

angle increases. In the remaining of this section, we discuss

the accuracy of the perturbation analysis with respect to the

accuracy of the estimated B+
1 maps and the flip angle by

Bloch equation simulations based on experimental B+
1 maps.

The estimated B+
1 maps were collected at a 3T GE scan-

ner with a two-channel parallel transmit coil. The gradient

waveform was determined by a 10-turn spiral-in excitation

k-space trajectory. The RF pulses were designed to achieve a

2D reduced FOV excitation pattern using a linear class large-

flip-angle design method [6]. Since the validation of the per-

turbation analysis doesn’t rely on specific distributions of B+
1

mapping errors, for the convenience of result comparison, we

assumed that the actual B+
1 maps were the estimated B+

1

maps plus i.i.d Gaussian noise with a standard deviation σ.

To quantitatively characterize the accuracy of the estimated

B+
1 map, we define the average SNR of the estimated B+

1

map as the energy of the estimation error divided by the

energy of the actual B+
1 map.

Solving the Bloch equation with the designed RF pulses

and the estimated B+
1 maps, we obtained the designed exci-

tation pattern. Solving the Bloch equation with the designed

RF pulses and the actual B+
1 maps, we obtained the actual

excitation pattern and the corresponding excitation error.

Repeating Bloch equation simulations, we calculated the

standard deviation of the excitation error. We were partic-

ularly interested in the standard deviation of the transverse

component of the excitation error, because the transverse

component would directly contribute to receiving signals.

We treated the standard deviation of the excitation error

calculated by repeating Bloch equation simulations as the

gold standard, and compared it with the standard deviation

calculated by the perturbation analysis, which is, based on
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Fig. 1. The true standard deviation of the excitation error vs. the one
estimated by the perturbation analysis. The average SNR of the estimated

B
+

1
maps is 20 dB. (a) and (c): The true standard deviations with 30

◦ and
90

◦ flip angle respectively. (b) and (d): The standard deviations estimated by
the perturbation analysis (Eq. (10)) with 30

◦ and 90
◦ flip angle respectively.

Eq. (9), given by:

σ∆Mxy
(~r, T ) ≈ 2σ

[

∑L
l=1 |α

∗(~r, T )c∗l (~r, T )

+β∗(~r, T )dl(~r, T )|2
]1/2

.
(10)

Figure 1 shows the true standard deviations of the exci-

tation errors (or simply the true standard deviations) (Fig. 1

(a) and (c)) and the ones estimated by the perturbation

analysis (Fig. 1 (b) and (d)), i.e. by Eq. (10), with 30◦

and 90◦ flip angle respectively. The magnitude and, more

importantly, the pattern of the standard deviation estimated

by the perturbation analysis have a very good match with

the true ones for both 30◦ and 90◦ flip angle. To further

quantitatively study the accuracy of the perturbation analysis

with respect to the flip angle, we calculate the root-mean-

square error (RMS error) of the standard deviation estimated

by the perturbation analysis. In Fig. 2 (a), we plot the RMS

error as a function of flip angle. The RMS error increases

as the flip angle increases because the contribution of the

ignored terms B∗

1 α̃∗ and B1β̃ in Eq. (5) increases with

increasing flip angles. However, the RMS error is below 10%
for flip angles from 10◦ to 90◦. The above results indicate

that the perturbation analysis is applicable to both small-flip-

angle and large-flip-angle RF pulses.

Figure 2 (b) shows the plot of the RMS error of the

standard deviation estimated by the perturbation analysis

as a function of average SNR of the estimated B+
1 maps.

The RMS error is below 10% for a wide range of average

SNR of the estimated B+
1 maps (from 30dB to 5dB). As

the average SNR further decreases, the RMS error quickly

increases. That is because the perturbation of the RF field

caused by the B+
1 mapping errors cannot be assumed to be

small, and the perturbation analysis becomes not validate in

these cases. This result demonstrates that the perturbation
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Fig. 2. (a): The RMS error of the standard deviation estimated by the
perturbation analysis vs. the flip angle, where the average SNR of the

estimated B
+

1
maps is 20 dB. (b): The RMS error of the standard deviation

estimated by the perturbation analysis vs. the average SNR of the estimated

B
+

1
maps, where the flip angle is 60

◦

analysis is applicable to a large range of average SNR of the

estimated B+
1 maps.

IV. CONCLUSIONS

In this paper, we present a perturbation analysis of the ef-

fects of B+
1 mapping errors on the resulting excitation pattern

based on linearization of the Bloch equation. Experimental

B+
1 maps based Bloch equation simulations demonstrate that

the perturbation analysis is validate for both small-flip-angle

and large-flip-angle RF pulses, and for a wide range of

average SNR of the estimated B+
1 maps.

The perturbation analysis builds a transparent connection

between the B+
1 mapping errors and the resulting excitation

error, and can be used to study the robustness of the designed

RF pulses to B+
1 mapping errors with different RF design

parameters, for instance flip angle, reduction factor, and

excitation k-space trajectory. The perturbation analysis may

also supply useful metrics for designing RF pulses that are

robust to B+
1 mapping errors.
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