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Abstract—Optical coherence tomography (OCT) is a new 
imaging modality gaining popularity in the medical 
community. Its application includes ophthalmology, 
gastroenterology, dermatology etc. As the use of OCT 
increases, the need for portable, low power devices also 
increases.  Digital signal processors (DSP) are well suited to 
meet the signal processing requirements of such a system. 
These processors usually operate on fixed precision. This paper 
analyzes the issues that a system implementer faces 
implementing signal processing algorithms on fixed point 
processor. Specifically, we show the effect of different fixed 
point precisions in the implementation of FFT on the sensitivity 
of Fourier domain OCT systems. 

I. INTRODUCTION 
PTICAL COHERENCE TOMOGRAPHY (OCT) is a non-
invasive, non-ionizing technique for imaging tissue 

structure of highly scattering media with very high 
resolution of the order of 1-15 μm 2 H [1],3 H [2]. It can be used to 
image turbid tissues such as skin up to depths of 1-2mm. For 
more transparent tissues like eye, imaging depths of 3-4mm 
are also feasible. The properties of OCT, make it a highly 
promising technique for a wide range of clinical 
applications, both in-vivo and ex-vivo. One of the most 
successful clinical applications of OCT has been in the field 
of ophthalmology. OCT can provide images revealing 
retinal pathology and can be used to diagnose and monitor 
several retinal diseases like glaucoma and macular edema. 
OCT has been used in gastroenterology for early diagnosis 
of tumors, and images delineating substructures of mucosa 
and sub-mucosa in GI organs have been reported. In 
addition, dermatological applications of OCT have been 
demonstrated.  

With an increase of applications of OCT systems, 
commercialization and corresponding miniaturization of 
such devices become important. With applications in 
ophthalmology, dermatology and endoscopy, making these 
systems low power and hand-held are essential for wider use 
of these devices. Digital Signal Processors have been widely 
used in various commercial and medical imaging 
applications to enable low power, battery operated, real time 
systems. DSPs are well designed to meet the signal 
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processing needs of OCT systems as well 4 H [3].  
The power/performance efficiency of DSP partly comes 

from the use of fixed precision mathematical operations. To 
date, no performance analysis has been reported in literature 
that considers fixed point operations. Usually, a careful 
balance between receiver noise and relative intensity noise 
(RIN) is required in the design of the system, so that the 
system sensitivity approaches the shot noise limit 5 H [4].  
Another trade-off is between the sensitivity and the dynamic 
range of the system 6 H [5]. It is, therefore, important to ensure 
that the following signal processing implementations do not 
add any additional noise or reduce the system sensitivity or 
the dynamic range. 

Of the two main types of OCT systems (time domain and 
Fourier domain), the Fourier domain (FD) systems have 
shown to have superior performance 7 H [4],8 H [6]. Irrespective of 
whether the Fourier domain system is based on swept source 
laser or with a spectrometer along with a broadband source, 
one of the essential processing is the Fast Fourier Transform 
(FFT). The dynamic range of the FFT output varies based on 
the internal precisions and scaling. In this paper, we focus 
on the precision issues of FFT implementation and their 
effects on OCT sensitivity.  

This paper is organized as follows. In section 9 H II, we 
provide a short description of OCT systems focusing on the 
signal processing chain. Section 1 0 H III describes the internal 
structures of FFT. Finally, in section 1 1 H IV, we present 
simulated results on the sensitivity of OCT systems of 
various FFT precisions and scaling strategies. 

II. OCT SYSTEMS: SHORT OVERVIEW 
OCT is based on coherent interference between reference 

and sample reflections. It uses a standard Michelson 
Interferometer with a low coherent light source. In the 
interferometer, the incoming beam is split into the reference 
path and the sample path which are recombined after 
reflections from their respective paths to form an 
interference signal. In FD system, which is of interest for 
this paper, the spectrum of the interfering signal is captured. 
This spectrum can either be captured through a spectrometer 
and CCD combination as shown in 1 2 HFigure 1 or through the 
use of a swept source where the source frequency is swept 
over a chosen range and the interference signal is detected 
through a photo-detector.  
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Figure 1: A simplified FD-OCT system diagram 

Independent of whether a photo-detector or a CCD 
camera is used, the detected signal is the average intensity 
over the frequency region of interest. The detected intensity 
signal as a function of angular frequency, ω ,can be written 
as 1 3 H [7] 
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Here, rK ,  sK ,  iK  are constants depending on system 

design, ( )ωS  is the source power spectral density (PSD), 

( )ωH , the sample frequency response, zΔ  the path 
difference between the reference and samples arms, and  

( )zΔφ , the corresponding phase difference. 
The sample response function describes the reflections 

from all the structures in the  z  direction within the sample 
and can be written as 1 4 H [7] 
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Here  ( )zr ,ω  represent the back-scattering coefficients 

from the sample structures and  ( )zn ,ω  is the refractive 
index. Note that these terms are frequency and depth 
dependent. 

In FD systems, we can assume 0=Δz . The structure 
information in the  z  direction can be recovered by taking 
the Fourier transform (FT) of the recorded spectrum. i.e., 

( ){ }0,)( ωIFTzi =                                 (3) 
The resulting depth resolved structural information is known 
as ‘A’ line scan in OCT literature. By moving a mirror 
assembly (not shown in 1 5 HFigure 1), a set of A line scans can 
be generated in different directions from which a 2-D or 3-D 
image can be formed. The detected data is digitized using an 
analog to digital converter (ADC). The FFT is used to 
perform the transform in the discrete space. 

Depending on the type of systems (whether swept source 
or spectral radar), the acquired data may not be spaced 
linearly in the frequency domain which is required to 

perform the FFT. In systems with CCD detection, the pixel 
spacing is usually linear in wavelength. Swept source lasers 
also do not sweep the frequency linearly.  Some swept 
source systems employ a secondary interferometer to extract 
the clocking information from the source and non-linearly 
clock the ADC so that the acquired data is linear in 
frequency 1 6 H [8]. In general, re-sampling is needed to convert 
input into linearly spaced data. Additional pre-processing 
includes filtering, averaging, dispersion compensation etc.  

Post processing includes determining the magnitude of 
the FFT which is then compressed to reduce the dynamic 
range to within the visibility range of the human eye. A 
generic processing chain for FD-OCT system is shown in 
1 7 HFigure 2. Additional post-processing steps like phase 
extraction may also be needed (e.g., Doppler OCT, 
polarization sensitive OCT etc.) 

 
Figure 2: Typical signal processing chain in FD-OCT 

III. FFT STRUCTURE 

A. Basic FFT Operations 
The FFT forms the heart of the computation in the FD 

OCT systems. FFT is performed on a dataset whose length is 
a power 2. The operations in FFT can be broken into stages 
known as radix-4 and radix-2 stages 1 8 H [9]. For data sizes of 
even powers of 2, only radix-4 operations are needed and for 
odd powers of 2, one additional stage of radix-2 is needed. 
The basic operation of radix-4 butterfly can be written as 
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And the basic operations in radix-2 butterfly are as follows 
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Here, Nkik
N eW /2π−= , and N  is the size of FFT. The 

operations are graphically illustrated in 1 9 HFigure 3. 

 
Figure 3: Radix-4 and Radix-2 operations used in FFT 
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B. Bit Growth 
The operations in the butterfly are as follows 
• Multiplication by powers of k

NW  commonly referred 
to as twiddle factors. In fixed point operations, 
multiplication must be followed by shift to ensure that 
the most significant bits (MSB) are not lost. This will 
result in a loss of precision since part of the least 
significant bits will be lost (LSB) 

• Additions and subtractions to produce the outputs of 
the butterfly stages. In fixed point operations, this 
stage results in bit growths. To ensure that MSB is not 
lost, one needs to scale properly. Again doing so 
results in a loss of precision. In radix-2 operations 
there will be at best one bit growth per stage and in 
radix-4 operations, there could be 2 bit growth.  

Not all stages in FFT will have a bit growth. So it is not 
necessary to scale the outputs at every stage. However, this 
requires analyzing the output of every stage at higher 
precision before the correct precision of the output can be 
determined. Other approaches include no scaling with 
corresponding danger of overflow, scaling at every stage 
with guarantee of no overflow but reduced precision 
(reduced dynamic range of output) and selective but pre-
determined scaling at every stage.  The selection of the 
scalings at different stages is dependent on signal statistics. 

C. FFT bit precisions 
In this paper, we present results on two bit precisions. In 

the first implementation, the twiddle factors are quantized to 
16 bits and the internal precision is maintained at 32 bit. We 
call this 16x32 implementation.  With 14 bits of input 
quantization, this implementation does not require any 
scaling for the FFT lengths we considered. Only the 
precision loss due to the loss of LSB in multiplication by 
twiddle factors and in the quantization of twiddle factors 
contributes to FFT noise. As we shall show later, this loss is 
well within acceptable range. 

The second implementation uses 16 bits of precision for 
twiddle factors as above but uses only 16 bits of internal 
precision. This introduces the additional noise due to bit 
growth in the additions in each radix stages. However, this 
16x16 implementation runs much faster than its 16x32 
counterpart 2 0 H [10]. This implementation is very sensitive to 
how scaling in the intermediate stages are done. Here we 
show the effect of choosing different scaling strategies on 
the sensitivity of FD-OCT systems. 

IV. RESULTS 

A. Simulation Method 
In order to simulate the effect of fixed point FFT 

performance on OCT systems, we have taken the following 
approaches 
• Source is assumed to have a Gaussian distribution. 
• Sample consists of a single reflective material. No 

scattering from surrounding material has been modeled. 
No dispersive effect is modeled. 

• The detected signal is modeled using Equation (2).  
The receive signal was discretized linearly in frequency 

(which will be the case for swept source using non-linear 
clocking scheme and hence no re-sampler was used). Noise 
was also added to make the sensitivity around 110 dB. The 
detected signal was then digitized assuming an ideal 14 bit 
ADC. The digitized data is finally passed through various 
FFT implementations and studied for sensitivity. 

B. Simulation Parameters 
Following is a list of simulation parameters used in our 

analysis 
• Center wavelength of source is 840 nm with Full Width 

Half Magnitude (FWHM) being 144 nm. The 
corresponding free space axial resolution is 2.16 μm. 

• Number of ADC quantization level is set at 14. We have 
modeled an ideal ADC. Commercial 14 bit ADC usually 
provides an effective 12-13 bits. The front end gain was 
set to ensure that the quantization noise is well below the 
system noise which was set at 110 dB below unity 
reflectivity.  

• Number of received frequency points was 2048. 
• The samples are chosen so that after FFT conversion, the 

sample distance is half the axial resolution, i.e., 1.08 μm. 
This corresponds to axial measurement range of 1.1 mm 
for 2048 point FFT. The corresponding spectral range for 
collecting the frequency data is 326 nm. 

• A balanced detection was assumed so that the DC term 
due to the reference arm was cancelled. 

• A single reflection from the sample with reflectivity set at 
-40 dB is used to determine sensitivity. The sensitivity 
can then be calculated by adding 40 dB to the SNR. 

C. Results 
We plot the magnitude of the FFT output in dB which 

shows the reflectivity and the noise floor.  
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14 bit quantized input; full precision FFT
no quantization; full precision FFT

 
Figure 4: Comparison of performance between full precision 

input and 14 bit quantization 
2 1 HFigure 4 shows the FFT output for full precision FFT with 

no input quantization and with 14 bit ADC quantization. 
There is no visible difference between the two. Thus, the 
noise floor for our simulated system is not limited by the 
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ADC. The SNR is seen to be 70 dB making the sensitivity at 
110dB. 2 2 HFigure 5 compares the outputs for 14 bit ADC with 
full precision FFT and with 16x32 fixed precision FFT. 
There is again no visible difference between the two. Results 
become interesting when we perform the 16x16 fixed point 
FFT. 2 3 HFigure 6 shows the output when no scaling is 
performed to take care of bit growth during the additions in 
any of the radix stages internally in the FFT. The output 
shows the effects of overflow which results in false peaks 
which will be interpreted as reflective objects in OCT 
systems. On the other hand when scaling is performed at 
every stage (2 4 HFigure 7), the system suffers from about 18 dB 
loss. In this case, the noise characteristics are also different 
since the noise is primarily determined by the loss of 
precision in FFT rather than by the input noise. Finally, we 
choose a strategy where only alternate stages are scaled. The 
results as seen from 2 5 HFigure 8 show that this case results in no 
loss of performance compared to full precision FFT 
providing the best complexity-performance tradeoff. 
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14 bit quantized input; full precision FFT
14 bit quantized input; 16x32 fixed point FFT (no scaling)

 
Figure 5: Comparison of performance between full precision 

FFT and 16x32 fixed point FFT 
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14 bit quantized input; 16x16 fixed point FFT (no scaling)

 
Figure 6: Performance of 16x16 fixed precision FFT with no 

intermediate scaling 

V. CONCLUSION 
This paper describes the impact of fixed point FFT 

implementation on OCT systems sensitivity. For typical 
OCT configuration, 16 bit input with 32 bit internal 
precision maintains the same sensitivity as double precision 
floating point implementation. To use 16 bit internal 
precision, proper scaling at the intermediate stages of the 

FFT is needed. This ensures that FFT noise is not the 
dominating noise. The analysis here is done using a 
simulated A line scan data with a single reflective sample 
structure model. Further work will be needed to validate 
these results with laboratory collected data. 
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12 bit quantized input; 16x16 fixed point FFT (full scaling)

 
Figure 7: Performance of 16x16 fixed precision FFT with 

scaling at all intermediate stages 
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14 bit quantized input; full precision FFT
14 bit quantized input; 16x16 fixed point FFT (alternate scaling)

 
Figure 8: Performance of 16x16 fixed precision FFT with 

alternate intermediate scaling (compared to full precision FFT) 
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