
  

  

Abstract—Advances in high-throughput genomic and 
proteomic technology have led to a growing interest in cancer 
biomarkers. These biomarkers can potentially improve the 
accuracy of cancer subtype prediction and subsequently, the 
success of therapy. In this paper, we describe emerging 
technology for enabling translational bioinformatics by 
improving biomarker identification. Specifically, we present an 
application that uses prior knowledge to identify the most 
biologically relevant gene ranking algorithm. Identification of 
statistically and biologically relevant biomarkers from high-
throughput data can be unreliable due to the nature of the 
data—e.g., high technical variability, small sample size, and 
high dimension size. Furthermore, due to the lack of available 
training samples, data-driven machine learning methods are 
often insufficient without the support of knowledge-based 
algorithms. As a case study, we apply these knowledge-driven 
methods to renal cancer data and identify genes that are 
potential biomarkers for cancer subtype classification.  

I. INTRODUCTION 
IOMARKER identification from high-throughput 
microarray data is sensitive to analysis parameters [1]. 

As a result, candidate biomarker lists are difficult to 
reproduce, limiting the efficiency of identifying relevant 
candidate biomarkers and applying them to problems such 
as clinical prediction. We have developed a web-based 
application called omniBiomarker that addresses this 
problem (http://omnibiomarker.bme.gatech.edu/). 
OmniBiomarker allows users to assess several gene ranking 
metrics in order to choose the most biologically relevant 
metric with respect to a specific clinical problem. A clinical 
problem is defined by the partitioning of biological 
samples—e.g. cancer vs. normal—and we assume that 
sample labels are correct. The biological relevance of a 
ranking metric is the probability that the metric can correctly 
identify differential biomarkers while reducing false 
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discoveries. We compute biological relevance for a gene 
ranking metric with respect to prior biological knowledge. 
Previously validated biomarkers serve as references with 
which to determine the relevance of ranking metrics [2]. In 
Fig. 1, for example, we assume that several genes (8, 52, and 
234) have been previously identified and validated for a 
clinical problem—i.e., these genes have been verified as 
differentially expressed between the disease conditions of 
interest. Among the multiple feature ranking metrics, the 
“optimal”, or most biologically relevant metric, should 
favorably rank these genes while simultaneously reducing 
the number of false discoveries (or genes that are not in our 
knowledge set). However, because our knowledge set is 
unlikely to be comprehensive, we can usually expect that 
some of the false discoveries may actually validate as 
biologically relevant genes. By using the most biologically 
relevant ranking metric, we increase the probability that 
these false discoveries, with respect to the current 
knowledge set, are actually relevant biomarkers. This 
increased probability leads to an improvement in the 
efficiency of identifying and validating new biomarkers that 
we can iteratively add to our knowledge set [2].  

In the following sections, we describe the architecture of 
omniBiomarker and review the underlying knowledge-based 
methodology. Using these methods, we optimize the gene 
ranking metric with respect to prior biological knowledge 
and identify some novel genes for validation as potential 
biomarkers for renal cancer subtype classification.  

 

 
Figure 1. Selection of a biologically relevant ranking metric using existing 
biological knowledge. The “optimal” method (Ranking Metric 1) minimizes 
the number of false discoveries with respect to the current knowledge set. 

Emerging Translational Bioinformatics: Knowledge-Guided 
Biomarker Identification for Cancer Diagnostics 

John H. Phan, Qiqin Yin-Goen, Andrew N. Young*, and May D. Wang* 

B 

4162

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



  

 
Figure 2. The omniBiomarker application contains four components: the 
client application (the web browser), the web server, the compute cluster 
(composed of several nodes, or processors), and the relational database.  

 

 
Figure 3. The omniBiomarker relational database is designed to store 
microarray data as well as gene ranking results. Microarray data are stored 
in a hierarchy that allows users to pre-process data and assign samples into 
classes for supervised analysis. The ‘analysis’ table stores all parameters for 
a particular gene ranking analysis as well as the ranking results (linked with 
the ‘score’ table) so that users may assess the results from multiple ranking 
analyses and select the most biologically relevant result.  

II. METHODS 

A. OmniBiomarker Application Architecture 
OmniBiomarker contains four components: client, web 

server, database, and compute cluster (Fig. 2). The client 
component, or web interface, allows users to interact with 
the application, relaying input to the web server. The web 
server component, in addition to responding to user 
commands and generating the appropriate user interfaces, 
contains utilities for uploading and downloading data—e.g., 
gene expression data and gene ranking results—to and from 
the MySQL relational database. The database component is 
accessed by both the web server and computation 
components. Fig. 3 is a simplified representation of the 
relational database. The computation component receives 
commands directly from the web server component through 
a web service and contains parallel-processor utilities for 
efficiently ranking genes.  

The relational database organizes information about gene 
expression values as well as gene ranking results (Fig. 3). 
Microarray samples—each of which contains expression 
values for thousands of genes—reside in a multi-level 

hierarchy that maximizes the flexibility of data analysis and 
reduces the overall storage requirements. A dataset typically 
consists of several microarray samples partitioned into 
specific phenotypic classes. The omniBiomarker interface 
allows users to customize these sample partitions—called 
‘label sets’ in the database—depending on the particular 
clinical problem. Each gene expression dataset links to 
metadata tables that contain annotation information for each 
biomarker. The database also includes several tables that 
store gene ranking results and analysis parameters. 

B. Gene Ranking and Biological Relevance 
For a clinical problem, we choose the most biologically 

relevant ranking metric from among several filter- and 
wrapper-based ranking algorithms [3]. The filter metrics 
include the commonly used t-test, fold change, and 
significance analysis of microarrays (SAM) [4]. The 
wrapper-based metrics include support vector machines 
(SVM), signed distance functions (SDF), and linear 
discriminant classifiers (LDA) [5-7]. Wrapper-based metrics 
rank genes by estimated classification error. Smaller 
classification error indicates that the gene may be a good 
predictive biomarker. Because microarray datasets usually 
have a limited number of samples, we estimate the 
classification error of each gene using 100 iterations of 
0.632+ bootstrap [8, 9]. Although we assess several ranking 
metrics, we only use the single most biologically relevant 
metric to select candidate biomarkers for validation. The use 
of multiple metrics also allows us to illustrate the sensitivity 
of candidate biomarker lists to the selection of a ranking 
metric.  

We compute the biological relevance of each ranking 
metric with respect to prior knowledge in the form of 
previously validated biomarkers. A gene ranking metric 
assigns to each gene, i, a score based on its differential 
expression, αi, where i = 1…m, and m is the total number of 
genes in a dataset. We assume that lower ranking scores 
indicate higher differential expression and that all scores are 
constrained to be within the interval ]1,0[ . We define 

},,,{ 21 kk gggG K= as the set of k relevant biomarkers such 
that elements of the set }:{ ki Gi ∈α are generally smaller 
than those of }:{ kj Gj ∉α . Genes in Gk should be ranked 

more favorably than the genes that are not in Gk. We define 
the following function as the biological relevance of a gene 
ranking metric, θ: 
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where I(x) is the indicator function, evaluating to one when 
x is true and zero otherwise. This formula for biological 
relevance is equivalent to the area under an ROC curve. The 
notation presented here is similar to that used in a previous 
study that examined the biological relevance of gene ranking 
[2, 10, 11].  
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Because we have a limited set of knowledge genes, we 
use a bootstrap simulation to examine the effect of ranking 
metric selection on biomarker detection efficiency. The 
simulation iteratively identifies the most biologically 
relevant ranking metric using only a subset of the total K 
knowledge genes—selected by randomly choosing K genes 
with replacement—then assesses the ability of that ranking 
metric to detect the remaining knowledge genes. The 

optimal ranking metric, θ̂ , maximizes the likelihood (ML 
estimation, or MLE) of the biological relevance formula: 

),(maxargˆ θφθ θ kG= . After identifying θ̂  given a subset of 
the knowledge genes, the simulation ranks all remaining 
genes, searches for the next biologically relevant gene 
(possibly encountering some false discoveries), updates the 
knowledge set, and repeats the process until all genes in Gk 
have been identified. The total number of false detections 
encountered during this process is inversely proportional to 
the biomarker detection efficiency. Plotting the biomarker 
detection efficiency curve (by stepping along the x-axis for 
each gene encountered during the search and stepping along 
the y-axis for each correct gene detection) reveals that the 
area under this curve (AUC) is proportional to the biomarker 
detection efficiency [2].  

C. Clinical Case Study 
In the clinical case study, we use a renal cancer dataset 

derived from a study by Schuetz et al. that uses Affymetrix 
microarrays (HG-Focus, 8793 probesets) to profile samples 
from several subtypes of renal tumors, including 13 clear 
cell (CC) renal cell carcinoma (RCC) and 5 papillary (PAP) 
[12]. We are interested in biomarkers that differentiate the 
CC class from the PAP class. Few reliable biomarkers have 
been validated for this differential diagnosis in clinical 
practice. We identify biomarkers with qRT-PCR validation 
and use these biomarkers as knowledge genes to compute 
biomarker detection efficiency and to propose novel 
biomarkers that may accurately classify CC and PAP 
samples. The use of qRT-PCR improves the quality of our 
knowledge set due to its high sensitivity and specificity.  

III. RESULTS AND DISCUSSION 

A. Validated Reference Genes 
As described in the methods, we identify several 

biomarkers that are differentially expressed according to 
qRT-PCR validation (Table 1). We filter qRT-PCR 
validated biomarkers such that their estimated classification 
errors are less than 20%. The use of qRT-PCR validated 
biomarkers increases our confidence in the differential 
expression of the biomarkers and ensures the quality of our 
knowledge set [2, 13].  
 
 
 
 
 

Table 1. qRT-PCR validated genes differentially expressed between the CC 
and PAP renal cancer subtypes.  

Gene Symbol Error Gene Symbol Error 
STC1 0.0345774 B3GNT4 0.138581 

NDUFA4L2 0.0379203 GRB7 0.168125 
CA9 0.0701198 BAMBI 0.169147 
CP 0.0781111 CCL20 0.188437 

ELF3 0.0819628 CTSC 0.192068 
BST2 0.112016 PECAM1 0.194247 

 

 
Figure 4. Area under the curve (AUC) plots representing biomarker 
detection efficiency for several feature ranking metrics. A larger AUC 
indicates higher detection efficiency. The optimal ranking metric, selected 
using maximum likelihood estimation (MLE), is more efficient compared to 
significance analysis of microarrays (SAM), a standard ranking method. 
The use of sub-optimal knowledge (sub-opt) when selecting the ranking 
metric decreases detection efficiency. When using randomly selected genes 
as knowledge, detection efficiency is random (control).  
 
Table 2. Differentially expressed genes between renal cancer CC and PAP 
subtypes proposed for further validation.  

Gene Symbol 
IGFBP6 DLG1 TCF4 GABRE 
EDNRA LRRFIP2 DSG2 COL5A2 
MYLK GBAS ELAC2 RAB4B 

INPP5D SYNPO HRH1 BIN1 

B. Gene Detection Efficiency 
Using our knowledge derived from qRT-PCR 

experiments, we examine the effect of optimizing the feature 
ranking metric using the previously described simulation 
method [2]. For the CC vs. PAP subtype comparison, box 
plots representing 100 iterations for each test indicate that 
the knowledge guided feature ranking metric (Fig. 4, 
black)—selected using the maximum likelihood estimation 
(MLE) method—outperforms the standard significance 
analysis of microarrays (SAM, Fig. 4, green) filter method. 
Furthermore, the quality of the initial knowledge set affects 
biomarker detection efficiency (Fig. 4, red)—the sub-
optimal knowledge set is randomly chosen from the total set 
of genes. As expected, the control test (Fig. 4, blue), in 
which we are detecting randomly selected genes using 
randomly selected initial knowledge, results in AUCs of 
approximately 0.5. This indicates that none of the gene 
ranking metrics favors uninformative genes better than 
random chance. Thus, the selection of a ranking metric as 
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well as the quality of knowledge genes (which affects the 
selection of a ranking metric) affects the biological 
relevance of gene ranking.  

C. Proposed Genes for Further Validation 
Results indicate that the use of biological knowledge to 

select an optimal gene ranking metric increases the 
efficiency of detecting additional biomarkers. Using all 
knowledge genes from Table 1, we identify a single, 
biologically relevant gene ranking metric. We then used this 
metric to identify additional genes for validation. Table 2 
lists the top 16 genes identified after ranking with the 
optimal metric, excluding genes previously identified in 
Table 1. These genes, in general, have not been described 
previously as RCC biomarkers. However, several have 
potential relevance for renal tumor pathobiology. For 
example, synaptopodin (SYNPO) and transcription factor 4 
(TCF4) are over-expressed in CC-RCC. SYNPO is 
expressed in glomerularpodocytes in the kidney and appears 
to be regulated by vascular endothelial growth factors 
(VEGF) [14]. Differential VEGF expression is a known 
feature of the CC subtype [12]. TCF4 is a key participant in 
WNT pathway signaling, which is dysregulated in several 
types of cancer. Insulin-like growth factor binding protein 6 
(IGFBP6) and glioblastoma amplified sequence (GBAS) are 
over-expressed in PAP-RCC. IGF binding proteins are 
biomarkers for several types of cancer [15]. GBAS is a 
likely target for tyrosine kinases that is co-amplified in some 
cancers with epidermal growth factor receptor (EGFR) [16]. 
GBAS is mapped to chromosome 7p12, which is commonly 
amplified in PAP-RCC [17]. Because we identified these 
genes using an optimal biologically relevant ranking metric, 
they are more likely to be true positives. Thus, after qRT-
PCR validation, we may add these biomarkers to our 
knowledge set and iteratively identify additional biomarkers.  

IV. CONCLUSION 
Biomarkers are essential for the successful treatment of 

cancer since they enable early detection of the disease before 
significant symptoms arise. Moreover, pathologists may use 
biomarkers to acquire information about disease prognosis 
from tissue biopsies that may not be readily apparent using 
traditional staining techniques. A cancer detection screening 
using biomarkers is essentially a clinical predictor that 
assigns patients to categories of disease presence/absence or 
degree of disease severity. Accurate assignment of patients 
into these categories will enhance therapeutic efficacy and 
improve treatment success rates. However, biomarker 
identification is difficult because of the large technical and 
biological variability of the data. Many gene ranking and 
selection methods exist, each of which may produce 
different results. In this paper, we have presented an 
emerging translational bioinformatics method that uses prior 
biological knowledge to guide ranking algorithm selection. 
By using the most biologically relevant ranking metric, we 

increase the efficiency of identifying novel biomarkers and 
decrease the false discovery rate. These knowledge-guided 
methods are encompassed within a web-based 
bioinformatics application called omniBiomarker. As a case 
study, we applied these methods to a renal cancer dataset 
and identified novel biomarkers.  
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