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Abstract—Brain is a complex network optimized both for 
segregated and distributed information processing.  To 
perform cognitive tasks, different areas of the brain must 
“cooperate,” thereby forming complex networks of interactions 
also known as brain functional networks. Previous studies have 
shown that these networks exhibit “small-world” 
characteristics.  Small-world topology, however, is a general 
property of all brain functional networks and does not capture 
structural changes in these networks in response to different 
stimuli or cognitive tasks.  Here we show how novel graph 
theoretic techniques can be utilized for precise analysis of brain 
functional networks.  These techniques allow us to detect 
structural changes in brain functional networks in response to 
different stimuli or cognitive tasks. For certain types of 
cognitive tasks we have found that these networks exhibit 
geometric structure in addition to the small-world topology. 
The method has been applied to the electrocorticographic 
signals of six epileptic patients. 

I. INTRODUCTION 
In response to external stimuli and/or cognitive processes, 
cortical neurons generate a series of electrical pulses, 
commonly known as action potentials, which propagate 
through various cortical layers and areas.  Direct measuring 
of action potentials requires invasive recording procedures, 
such as intracranial implantation of recording 
microelectrodes.  A far more common recording modality in 
human studies is to record gross potentials, normally 
representing the average activity of many neurons.  These 
gross potentials can be measured either non-invasively, by 
means of electroencephalography (EEG), or invasively, by 
means of electrocorticography (ECoG). These 
measurements then can be used to construct brain functional 
networks (BFNs).  In these networks (also called graphs 
throughout this paper), nodes are abstractions of the regions 
of the brain (represented by sensors) and two nodes are 
connected by an edge if the signals at corresponding sensors 
are dependent.   

There are many empirical and theoretical reasons why it is 
useful to model brain activity using graph theory.  First, the 

brain is a complex network itself, consisting of millions of 
neurons and connections between them.  Second, to 
successfully perform any cognitive task, different areas of 
the brain need to work together.  Finally, during the brain’s 
evolution, the structure of brain functional networks have 
been optimized for efficient information processing [2]. 
Hence, understanding the structural properties of brain 
functional networks will help us gain new insight into the 
ways in which the brain performs its functions. 
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 Recent studies of brain functional networks [1], [2] 
showed that they exhibit small-word properties.  The small-
world property was introduced by Watts and Strogatz [3] 
and observed in many social and biological networks.  
Intuitively, this property quantifies the efficiency of 
connectivity structure in a network.  That is, small-world 
networks have higher clustering coefficients compared to 
random networks of the same size and small average 
pathlengths.  It is believed that such a network structure has 
a lower cost of information processing [2] and that therefore, 
BFNs have evolved to have this structure.   Note however, 
that the small-world topology is a very general property.  
Many topologically different networks can exhibit this 
property.  Hence, it is important to investigate the fit of more 
restrictive network models to BFN data.  Furthermore, 
whether different cognitive tasks performed by a subject 
result in changes in BFN structure and what random graph 
models provide the best fit for those BFNs is in itself an 
interesting research question. Using novel graph-theoretic 
methods [4], we were able to show how the topology of 
BFNs corresponding to different cognitive tasks changes 
throughout the course of a single experiment. We further 
show that in addition to their small-world topology these 
networks are consistent with geometric networks [5] 
(defined in section IV.C below). 

II. EXPERIMENTAL SETUP  
The analyzed data represents ECoGs of six epileptic 

patients, measured invasively by subdural or intracortical 
implantation of recording electrodes. All the patients 
suffered from intractable epilepsies (i.e. did not respond well 
to a drug therapy) and elected to have a brain surgery, with 
the purpose of removing, or simply resecting 
(disconnecting), epileptogenic zones—the areas of the brain 
where seizures originate from. In preparation to these types 
of surgeries, the role of ECoG measurement is two-fold (in 
both cases, the technique is considered to be the “gold 
standard”): (i) Epileptogenic zone localization and (ii) 
Eloquent brain mapping. Table 1 lists the type and number 
of ECoG electrodes that were analyzed for each subject. For 
the original reference and related follow-up studies, the 
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reader is referred to [6], [7], [8]. These patients were 
implanted with electrodes usually for a week, and sometimes 
longer. During this time, they are typically waiting for 
seizures to happen, otherwise doing nothing. Since this is a 
rather uninteresting procedure, some of them sign up for 
scientific studies, such as the ones presented here. It should 
be noted that these experiments have nothing to do with 
clinical procedures and are purely voluntary. It should also 
be noted that the electrode placement was based solely on 
the requirements of the clinical evaluation without any 
regard for the scientific study. 

A brief account of the experiment is presented next (Fig. 
1). For the original reference the reader is referred to [6].  At 

the beginning of each trial, a fixation stimulus is presented 
in the center of a touch screen and the participant initiates 
the trial by placing his right hand on the stimulus.  This 
marks the onset of the fixation stage.  After a short period, a 
peripheral target is flashed on the screen, at one of the 6 or 8 
locations (depending on the subject), which marks the onset 
of the target stage.  The subjects were instructed not to 
move their eyes, but no quantitative assessment of their eye 
movements was available.  The target stage is followed by 
the delay stage, whose onset is defined by extinguishing the 
peripheral target.  The fixation is extinguished after the 
delay stage, and it acts as a cue for the participants to reach 
to the memorized location and marks the onset of the go 
stage.  Upon completion of the go stage, a beep indicates 
whether it was correct or incorrect and a new trial is initiated 
after a brief delay period.  The position of the peripheral 
target was randomly interleaved on a trial-by-trial basis.  
The number of trials varied between 69 and 82 per target 
location, yielding a total number of trials between 1,532 and 
1,948. To prevent phase-locked response, the durations of 

fixation, target and go stages were randomized (uniform 
distribution between 1 and 1.3 s).   

TABLE I 
TYPES OF ECOG ELECTRODES 

Subject Electrode  type Number of 
electrodes  

S001 Bilateral depth 75 
S002 R grids 123 
S003 R depth/grids 76 
S004 L grids 126 
S005 Bilateral depth 61 
S006 Bilateral depth 91 

Types of the ECoG data that were analyzed. The major differences 
between ECoG grids and depth electrodes are: (i) depth electrodes are 
inserted (perpendicular to the cortical surface) into the brain tissue, and 
(ii) depth electrode contacts are much smaller (~1mm) with inter-electrode 
spacing of 8 mm compared to grid electrodes with ~4mm and ~1cm, 
respectively. 

III. METHODS 
We model the brain functional network as an undirected 

graph (network), ),( ENG = , where N is a set of nodes and 
E is a set of edges.  Each node, n, from the node set N 
corresponds to one of the ECoG electrodes.  Since 
electrodes measure signals in different areas of the brain, 
functionally, nodes represent these regions.  We put an edge 
between two nodes u and  if the signals on the 
corresponding sensors are “dependent enough” (see below).   

v

A. Constructing BFNs 
For each subject, stage and target location we take the 

median of the signals at each sensor calculated over trials 
and we work further with these data. Note that this 
procedure significantly reduces the noise in ECoG signals. 
From these data BFNs are constructed for each subject, 
stage and target location, as explained below.  

There are many ways to decide whether signals at two 
sensors are co-dependent, and the simplest one is to 
calculate the correlation coefficient between two signals. 
Then, if this coefficient is higher than some chosen 
threshold, the nodes corresponding to these sensors are 
connected by an edge. While this is the most straightforward 
approach that has been used frequently [2], there are some 
serious drawbacks.  Before reaching the sensor, a signal in 
the brain may undergo nonlinear transformations.  
Generally, this may significantly alter the correlation 
between two signals, and even change the sign of the 

correlation (see Fig. 2). Hence, a more robust connectivity 
metric needs to be chosen that is more tolerant to non-linear 
transformations in the data. Furthermore, the correlation 
coefficient measures the strength of linear interactions 
between two random variables, however it ignores nonlinear 
ones. For this purpose, we chose mutual information, which 
is more robust to nonlinear transformations and can measure 

 
Fig.  1.   Experimental protocol.  Each trail has four stages: fixation, 
target, delay and go.  During each stage, the brain is supposed to 
control and perform different tasks. 

 
Fig. 2. (A): Two signals x and y are highly correlated with Pearson 
correlation coefficient p=0.99 and mutual information MI=0.75 
between them. (B): Two signals x’ and y’ are non-linear 
transformations of signals x and y. The correlation between signals has 
been destroyed by this transformation (p=-0.01). However, as it can be 
seen from the picture, there is still a strong dependency between x’ and 
y’ and about half of the mutual information (MI=0.31) between signals 
was preserved.  
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nonlinear interactions in the data [9]. Mutual information 
between two continuous random variables X and Y is 
defined as 

)|()(),( YXhXhYXI −=µ           (1) 
where h(X) is differential or Shannon’s entropy of the 
random variable X, defined as  

∫−= dxxpxpXh XX )(log)()( 2
.         (2)  

Here,  is the probability density function of the 
random variable X. Since we do not know , we 
estimate it from the data by using histograms.  Thus, we 
calculate the discretized entropy and mutual information.  It 
can be shown that if the discretization step is ∆,  for 
discretized entropy, H(X), and differential entropy, h(X), the 
following is true [9]: 

)(xp X

)(xp X

)()log)((lim 20
XhXH =∆+

→∆
.           (3) 

Therefore, mutual information between two continuous 
random variables is 

),()|()())|()((lim
0

YXIYXhXhYXHXH µ=−=−
→∆

(4) 

Hence, we estimate the amount of mutual information 
between two signals using discretized versions of the 
entropies, H(X) and H(X|Y) (this is the conditional entropy 
of X given that the value of Y  is known).  The number of 
bins for the histograms was chosen using Sturges’ formula 
[9].  After calculating ),( YXIµ , we normalize it by 

and get the connectivity matrix M: )}(),(max{ YHXH

nji
jHiH

jiIjiM ...1,,
)}(),(max{

),(),( ==
µ .     (5) 

Next, we need to choose an appropriate threshold for 
M(i,j) to decide whether to put an edge between nodes i and 
j.  To avoid arbitrariness in setting the threshold, we perform 
further statistical analysis.  If two sensors i and j have some 
amount of mutual information xYXI =),(µ , we want to 
know whether this amount of information is statistically 
significant.  Thus, we calculate the following p-values: 
P(µI(i,j) x| i and j are independent)         (6) ≥
Empirically, we found that the threshold of 0.2 for the 
normalized mutual information always corresponds to p-
values lower than .   310 −

B. Graph theoretic analysis 
1) Network parameters 

First, we calculate the standard graph theoretic parameters of 
the networks, such as the average clustering coefficient (C) 
and the average pathlength (L).  Based on these two 
parameters, it is possible to classify a network as being 
small-world. The clustering coefficient of a node v with 
degree k (number of its neighbors) is defined as 

)1(
*2)(

−
=

kk
EvC v                  (7)  

Here, is the number of edges amongst the neighbors of 
node v.  For nodes with degree k=0 or 1 (nodes without 

neighbors or only with one neighbor), the clustering 
coefficient is defined to be zero. Then, the average 
clustering coefficient of the network is simply the average of 
clustering coefficients over all of its nodes. 

vE

The pathlength between two nodes v and w is the number 
of edges on the shortest path between them. The average 
pathlength of the graph is the average of pairwise 
pathlengths between all pairs of its nodes. Small-world 
networks are defined to be those networks that have 
clustering coefficients significantly larger than the clustering 
coefficients of random networks of the same size and 
average pathlengths approximately the same as random 
networks of the same size [3].  Note that random networks 
have small average pathlengths [10].  As in [2], we define 

randL
L

=λ  and 
randC
C

=γ , where Lrand and Crand are 

averaged values of pathlengths and clustering coefficients of 
random networks with the same number of nodes and edges 
as the BFNs synthesized from the data.  For small-world 
networks, λ  should be approximately equal to 1 and 

γ should be greater than 1.  Hence, if the quantity 
λ
γσ = is 

greater than 1, the network is considered to have the small-
world topology [2]. 

2)  Network comparison 
To capture the structural changes in BFNs as the brain 

engages in the 4 cognitive tasks (corresponding to the 4 
experimental stages), we need to compare different BFNs 
and quantify their differences and similarities.   
 The first metric we use is called edge correctness (EC).  
Since all brain functional networks that we construct for the 
same subject have the same set of nodes, we can calculate 
the fraction of edges which were preserved between these 
networks. More specifically, if we have two BFNs 

),( 11 EVG =  and ),( 22 EVG = , where V is the set of nodes 
(vertices) and E is the set of edges, the edge correctness 
between them is  

%100*
|}||,max{|

|}),(),(:),{(|

21

21

EE
EvuandEvuvuEC ∈∈

=  (9) 

Here |E1| is the number of elements in E1. Clearly, if 
= , than their edge correctness is 100%.  On the other 

hand, low EC means that the networks are different.   
1G 2G

To provide a detailed evaluation of local structural 
similarities between two networks, we use a highly 
constraining measure of local structural similarity between 
two networks, Graphlet Degree Distribution (GDD) 
agreement, introduced by Przulj [4].  GDD can be 
understood as a generalization of commonly used graph 
degree distribution. To briefly explain this similarity 
measure, we first need to give a few definitions.   
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A subgraph H of G is induced, if its node set is a subset of 
the node set of G and H contains all edges between its nodes 
that are present in G. A graphlet is a small induced subgraph 
of a network [4].  Because of the small-world nature of the 
networks we are dealing with, to capture the structural 
properties of the network, it is sufficient to consider 
graphlets containing between 2 and 5 nodes.  There are 30 
possible non-isomorphic graphlets on 2, 3, 4 and 5 nodes.  
From a topological point of view, it is relevant to distinguish 
between some nodes in the graphlets.  For example, for the 
3-node graphlet G1, the node in the middle of the path is 
different from its end-nodes (it is of degree 2), whereas the 

two end-nodes are topologically identical (they are of degree 
1 and adjacent to the middle node).  This is mathematically 
defined by the notion of automorphism orbits (see [4] for 
details).  Hence, the 3-node path has 2 automorphism orbits, 
one containing its end-nodes and the other its middle node 
(see Fig. 3 for examples).   There are 73 automorphism 
orbits for graphlets on 2 to 5 nodes (see [4]).  To calculate 
the GDD of a network corresponding to orbit i, for each of 
its nodes we calculate how many times it touches orbit i.  
We do this for each of the 73 orbits.  This results in 73-
dimensional distribution. Since the only 2-node graphlet is 
an edge, the first component of this multi-dimensional 
distribution is the degree distribution. GDD agreement of 
two networks is a similarity measure between the ith graphlet 
degree distributions over all orbits i for the two networks.  If 
it is close to 1, the distributions are similar and thus the 
networks have a similar local structure; if it is close to 0, the 
networks have substantial structural differences [4].   

IV. RESULTS AND DISCUSSION 

A. Small-world property 
As described in the Methods, for each subject, each 

experiment and each stage of the experiment (see Fig.  1), 
we construct a brain functional network.  To determine if 
these BFNs exhibit small-world properties, we calculate 
their clustering coefficients and average pathlengths.  To 
calculate λ  , γ and σ  for each BFN that we analyze, we  
generate 20 instances of Erdos-Renyi random graphs [10] 
with the same number of nodes and edges as the BFN and 
calculate Crand and Lrand.  We find that all of the BFNs have 
small world characteristics.  The average value of σ did 
vary between different stages of experiments, but in most 
cases these variations were not sufficient to distinguish 
between the stages. While we found that the values of σ  

depend on the electrode type (e.g. depth vs. grids), they are 
uniformly greater than 1, which is consistent with previous 
studies showing that BFNs have small-world properties [1], 
[2]. Note that 1>σ  does not guarantee the “small-world” 
property, since λ (the average pathlength) can be too high. 
However, in our analysis, for all networks λ was less than 
1.5 meaning that they all are undoubtedly “small-world.”   

B. Differentiation between stages 
The experiments that we analyzed are naturally divided 

into four stages: fixation, target, delay and go (Fig.  1).   It is 
reasonable to assume that during these stages the brain 

functions differently and therefore the corresponding brain 
functional networks should also be different. First, if we 
examine how the number of edges changes depending on the 
stage, we can see a clear difference. As Figure 4 shows, the 
target stage has the maximum number of edges while the 
delay stage has the least number of edges. For the target 
stage this observation holds in 94% of the bilateral depth 
experiments (subjects S1, S5 and S6). The delay stage has 
the least number of edges in 77% of the bilateral depth 
experiments. For the grid type of electrodes these 
dependencies hold only for the subject number 2. 

Next, for each subject, we calculate a pairwise edge 
correctness and GDD agreement between BFNs 
corresponding to different stages and experiments. Based on 
these scores, we find that although target and delay stages 
are contiguous in time, they are the most dissimilar, not only 
by the number of edges of their BFNs, but also topologically 
as measured by GDD agreements (Edge Correctness), 
respectively. This is true for 72% (75%) of experiments we 
analyzed. For bilateral depth electrodes this rate is 83% 
(94%), whereas for grid type of electrodes it is 61% (55%). 
Table 2 summarizes these findings.   

 
Fig. 4. Subject 005: bilateral depth electrodes. x-axis corresponds to 
the four different stages of the experiment; y-axis corresponds to the 
number of edges in the BFN for a given stage.  Lines of different 
colors correspond to the experiments where the peripheral target 
appeared at one of the six locations.  

Fig. 3. All possible graphlets on 2 to 4 nodes and their automorphism 
orbits. Numbers near the nodes correspond to the automorphism 
orbit’s number, which equals to the corresponding component number 
of GDD vector.  

TABLE 2 
TARGET AND DELAY STAGES ARE TOPOLOGICALLY THE MOST DISSIMILAR 
Electrode type % of experiments 
Bilateral depths 83% (94%) 
All experiments 72% (75%) 
All except bilateral depths 61% (55%) 
Can be expected at random 33% (33%) 

First column represents subjects with particular electrode type. Second 
column shows % of experiments in which, according to GDD agreement 
(Edge Correctness) “target” and “delay” stages are most dissimilar.  
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The better discrimination between target and delay stages 
for BFNs constructed from the bilateral depth electrodes 
may be explained by their superior recording properties. 
Namely, bilateral depth electrodes are: (i) placed in the 
cortex and subcortical areas (as opposed to grids which are 
placed on the cortical surface), (ii) have smaller sensors (1 
mm in bilateral depths vs 4 mm in grids), which presumably 
yield betters signal resolution, and (iii) placed bilaterally, 
which may provide a more complete description of the brain 
states than single hemisphere grid electrodes. 

C. Network Models 
To further describe the structure of these networks, we 

test how well several most commonly used random graph 
models fit these data.  Using Graphcrunch software package 
[11], we compare each BFN with 30 instances of each of the 
following random graph models: (i) Erdos-Renyi [10], (ii) 
Erdos-Renyi with the same degree distribution as in data, 
(iii) Scale-free Barabasi-Albert [12], (iv) Geometric graphs 
[5], and (v) Stickiness-index-based model [13].  A geometric 
random graph is constructed as follows.  We place nodes 
uniformly at random in a metric space (in our case, a 3-
dimensional Euclidean unit cube); then we choose a 
parameter ε and connect two nodes by an edge if the 
Euclidean distance between the nodes is less than ε.   

We find that in 67% of the cases, brain functional 
networks corresponding to the fixation and go stages are 
best modeled by geometric random graphs (see Fig.  5). In 

all other cases, no model fits any stage well; in particular, 
the popular scale-free model does not fit well these data.  
Hence, when brain performs specific cognitive tasks, in 
addition to their small-world properties, brain functional 
networks also exhibit a geometric structure. 

V. CONCLUSION 
Insights into the structure of brain functional networks can 

potentially improve our understanding of the brain’s 
function.  Previously, it was shown, and also confirmed by 
our experiments, that BFNs have small-world properties [1], 
[2]. However, the small-world property is not a 
discriminating factor between BFNs that underlie different 
cognitive tasks.  For this reason, we take the graph-theoretic 

analysis further and show that even though all BFNs are 
small-world, it is possible to further distinguish between 
them if network parameters such as Edge Correctness and 
GDD Agreement are used. In particular, we were able to 
show that BFNs corresponding to different cognitive tasks 
can be separated based these metrics. Furthermore, in terms 
of a more precise characterization of the network structure, 
we show that BFNs corresponding to certain cognitive tasks 
have a geometric graph structure. 
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