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Abstract—Identification of a complex biochemical system
model requires appropriate experimental data. Models con-
structed on the basis of data from the literature often contain
parameters that are not identifiable with high sensitivity and
therefore require additional experimental data to identify those
parameters. Here we report the application of a local sensitivity
analysis to design experiments that will improve the identifia-
bility of previously unidentifiable model parameters in a model
of mitochondrial oxidative phosphorylation and tricaboxylic
acid cycle. Experiments were designed based on measurable
biochemical reactants in a dilute suspension of purified cardiac
mitochondria with experimentally feasible perturbations to this
system. Experimental perturbations and variables yielding the
most number of parameters above a 5% sensitivity level are
presented and discussed.

I. INTRODUCTION

A. Parameter identification in complex biochemical systems
A key problem in Systems Biology is the construction of a

computational model that is parameterized for the biological
system being studied. Ideally, a computational model should
be parameterized for the same biochemical system that
is being investigated experimentally in order to generate
predictions for valid hypothesis testing [4]. However, it is
often not possible to experimentally characterize the kinetics
of every component of a biochemical system generally
composed of many enzymes and transporters organized in
various subcellular compartments. Therefore, extant models
of biochemical pathways in the literature derive their model
components and parameters from previously published data
in the literature that may differ in experimental conditions
and/or in biological species. This is a necessary step in
generating a first quantitative working hypothesis of the
system in question. In the present study we outline strategies
for designing experiments for identification of model para-
meters of a specific biochemical system when a working
computational model with an initial estimate of parameters
is available for this system.

B. Strategies for experiment design based on parameter
sensitivities

Optimal design of experiments for system identification
consists of two essential stages: 1) design of measurable
experimental transients for model identification, and 2) selec-
tion of a sampling schedule for minimizing the variances of
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the estimated parameters [2]. The present study is focused on
the former aspect of model-based experimental design. We
employ local sensitivity functions as a practical metric for
parameter identifiability [3]. Measurable state variables must
be selected based on practical considerations for computing
local sensitivities with respect to model parameters. In the
current work we define the local sensitivity using a central
difference formula:

Si,j =
0.5〈|Ci(Pj − 0.1Pj , tk)− Ci(Pj , tk)|〉

0.1〈Ci(Pj , tk)〉
+

0.5〈|Ci(Pj + 0.1Pj, tk)− Ci(Pj , tk)|〉
0.1〈Ci(Pj , tk)〉 , (1)

where Si,j is a normalized local sensitivity, Ci is a state
variable, Pj is a parameter, tk is the kth time-step, and 〈·〉
denotes averaging over time.

Finally, we employ the following strategies for designing
an experimentally measurable time course of selected model
state variables:

1) Compute local sensitivities based on existing parameter
values.

2) Compute local sensitivities under different initial con-
ditions for the concentration state variables and total
metabolite pools.

3) Identify perturbations for a single experiment type that
can enhance sensitivities of measurable state variables
to parameters.

4) Identify combinations of experiments that can enhance
sensitivities of measurable state variables to parame-
ters.

C. Model based experiment design for mitochondrial bioen-
ergetics

The application presented in this study pertains to mito-
chondrial oxidative phosphorylation and tricarboxylic acid
(TCA) cycle. We used a previously published model of
these pathways by Wu et al. [8] with the goal of improving
normalized sensitivities listed in Table 3 in [8]. This model
has been parameterized using transient and steady state
data from experiments on purified rat and porcine cardiac
mitochondria. The in vitro model was also applied to in
vivo data [7], [9] with additional cytosolic enzymes creatine
kinase, ATPase, and adenylate kinase for validating the role
of a key physiological feedback control signal from inorganic
phosphate in regulating cardiac energetics.

In the study of Wu et al. [8], sensitivity was defined as
the relative change in the sum of squares of the residuals
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Fig. 1. Schematic of the Wu et al. [8] model for mitochondrial oxida-
tive phosphorylation, TCA cycle, and electrophysiology. The biochemical
reactants that are transported into the buffer space constitute the measurable
state variables (ATP, ADP, Pi, MAL, GLU, AKG, FUM, ASP, SUC, PYR,
CIT) in addition to NADH autofluorescence and dye based measurements
of mitochondrial membrane potential. MAL, GLU, AKG, FUM, ASP,
SUC, PYR, CIT are the seven subsrates for experiement design. The
adjustable parameters are 43 enzyme and transporter activities and two
kinetic regulatory parameters. Abbreviations used are explained in Wu et
al. [8] .

with respect to a 10% change in a single parameter value
from the set of optimized adjustable model parameters. In
order to identify the model for our experimental system, we
designed experiments based on the transition of mitochondria
from a resting state (State 2) to maximal stimulation using
ADP (State 3) and a return to another resting state upon
consumption of ADP (State 4).

II. METHODS

A previously published computational model of mito-
chondrial oxidative phosphorylation, TCA cycle, and elec-
trophysiology [8] was used to simulate experiments and
compute parameter sensitivities. Model compilation and sim-
ulation was performed in a Matlab (Mathworks Inc., Natick,
MA) based simulation environment BISEN [6]. A schematic
representation of the Wu et al. [8] model applied to our
experiments is illustrated in Fig. 1.

Biochemical reactants transported to the buffer space from
the intermembrane space constitute the measurable state
variable list in a dilute suspension of purified mitochon-
dria, in addition to the variables that can be measured
by fluorescence-based techniques, such as NAD(P)H and
mitochondrial membrane potential. The experiment consid-
ered is a State 2-3-4 transition using various mitochondrial
substrates under different inorganic phosphate (Pi) concen-
trations. Sensitivity analysis was performed by perturbing
each parameter by 10% and computing the normalized local
sensitivity of measurable state variables using Eq. 1. The
sensitivity calculations of measurable state variables with

respect to adjustable model parameters were performed for
experiments with all possible dual TCA cycle substrate
inputs, at different initial Pi concentrations. Specifically, the
initial phosphate pool was set at high (2.5 mM), interme-
diate (0.5 mM), and limiting (0.1 mM) concentrations to
generate data that is sufficiently sensitive to the phosphate-
dependent biochemical feedback to identify related aspects of
the model. For each experiment we listed all state variables
with greater than 5% sensitivity to the adjustable parameters.
Experiments with the highest number of such sensitivities
were chosen and analyzed for implementation.
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Fig. 2. Time courses of matrix NADH/(NADH+NAD) during a State-2-3-4
transition with 10 mM pyruvate and 10 mM malate as substrates at three
different initial Pi concentrations. Substrates are added at 0 s followed by
the addition of ADP at 60s.
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Fig. 3. Time courses of buffer phosphate concentration during a State-2-3-
4 transition with 10mM pyruvate and 10 mM malate as substrates at three
different initial Pi concentrations. Substrates are added at 0 s followed by
the addition of ADP at 60s.

III. RESULTS
Fig. 2 and Fig. 3 show the time courses of

NADH/(NADH+NAD) in the matrix and inorganic
phosphate (Pi) in the buffer during a State-2-3-4 transition
at different initial buffer Pi concentrations using pyruvate
and malate as the substrates. Experiments with varying
initial buffer Pi concentrations were designed to estimate
the sensitivities of the measured state variables to the
phosphate control parameters in the Wu et al. [8] model.
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Variation in initial buffer phosphate concentrations produces
distinct changes in the time courses of the measurable state
variables. Phopshorylation of 250 μM of ADP during the
course of these experiments decreases the buffer phosphate
concentration by the same amount as shown in Fig. 3.

The total number of experiments computed from two
substrate and single substrate incubations of seven TCA cycle
substrates and three different initial phosphate concentrations
is 84. The number of measurable state variables is 13 and the
number of adjustable parameters is 45, resulting in a total of
585 sensitivities for each experiment (see Fig. 1). Sensitivity
values greater than 5% were enumerated for each of the
84 experiments defined by substrate combination and initial
phosphate concentration. Analysis of sensitivity computation
for all 84 experiments showed that 28 parameters are asso-
ciated with sensitivities above 5%. The top five parameters
associated with highest number of sensitivity values greater
than 5% are the activity of proton leak, activity of Complex
III, Pi sensitivity parameter of Complex III, activities of
adenine nucleotide translocator and succinate dehydrogenase,
which are indeed key system parameters.
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Fig. 4. Interval distribution of number of sensitivity functions above 5%
in 84 experiments. In both panels the first 19 columns denote intervals from
5% to 100% in increments of 5% and 20th the column represents the interval
for sensitivity greater than 100%. The 84 rows correspond to possible
experiment designs at three levels of initial Pi concentration where, rows
1-28 represent experiments with 0.1 mM initial Pi; rows 29-56 represent
experiments with 0.5 mM initial Pi; rows 57-84 represent experiments with
2.5 mM initial Pi. A) Number of sensitivity functions in each interval B)
Number of sensitivity functions in each interval normalized to the highest
number in that interval (column normalized)

A summary of the number of sensitvity functions greater
than 5% is presented in Fig. 4A and Fig. 4B on a hot
colormap. The first 19 columns of Fig. 4 represent intervals

ranging from 5%-100% in increments of 5% and the 20th
column represents the interval for sensitivity greater than
100%. The rows represent the 84 experiments, and number
of sensitivity functions in each interval are mapped to a
hot colormap, with a columnwise normalization in panel B.
These figures indicate that the highest number of sensitiv-
ity functions above 5% are clustered in experiments 1-5.
These are experiments with aspartate-glutamate(51 values),
aspartate-α-ketoglutarate (42 values), aspartate-malate (37
values), aspartate-citrate (36 values), and aspartate-pyruvate
(23 values) as the substrate pairs at the lowest concentration
(0.1 mM) of initial phosphate used in our analysis. All other
experiments yield significantly fewer sensitivity functions (4-
14 values) above 5%. Fig. 5 shows the sensitivity values for
these five experiments. Only 6.5% of all sensitivity values
are above 5%.
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Fig. 5. Sensitivity values of measurable state variables in the 5 experiments
with the highest number of sensitivity values above 5% i.e. 0.05. Panels A
to E represent the sensitivity matrices corresponding to experiments 1-5
in Fig. 4. In each panel, the abscissa shows the parameter index and the
ordinate shows measurable state variable indices.

Measurement of all 13 state variables is not practical
in most situations, therefore we identified a subset of
experiment-state variable combinations that yielded the most
number of sensitivity values. We define measurement of
NADH autofluorescence, ATP, ADP, Pi and two of the TCA
cycle intermediates by enzymatic analysis as a feasible subset
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of measurements for a given experiment i.e., 6 out of the 13
state variables. Based on the preceding definition of feasible
measurements, Aspartate-citrate incubation with measure-
ment of malate, glutamate, NADH, ATP, ADP and Pi yields
the highhest number of sensitivities (36 values). In summary,
only a small subset experiment-measurement combinations
among the large number of possible experiments can provide
good parameter sensitivity based on the present model.

IV. DISCUSSION AND FUTURE WORK

The present study demonstrates the application of a combi-
nation of sensitivity analysis with experimental perturbations
guided by prior knowledge about the system, to help select a
subset of measurable state variables for parameter identifica-
tion. The normalized sensitivity function is generally defined
as the partial derivative of log of state variable with respect to
log of a parameter. In the present study we defined an approx-
imate sensitivity in Eq 1, in order to obtain a single number
that could be used as a measure of sensitivity. Thomaseth
and Cobelli [5] have derived generalized sensitivity functions
that also account for the influence of model sensitivities with
respect state variables, which could be useful in choosing a
sampling schedule for acquiring chemical measurements of
reactant time courses.

The present study was guided by prior knowledge on
model parameters and physiological regulation revealed in
multiple systems using the current model. The sensitivity
analyses must be interpreted with the understanding that
only a narrow range of parameter space was probed by
perturbing one parameter at a time [3]. In the absence of
a prior point estimate of the parameters from any source,
experiments must be conducted to obtain an initial estimate.
The initial estimate may be evaluated for precision and
sensitivity, which may lead to further design upon detection
of insufficiencies. These steps constitute an iterative process
for experiment design to obtain reliable parameter estimates
in a complex biochemical system model.

Future work will consist of locally alphabet-optimal de-
signs computed based on the selected experiment(s) and
initial point estimate of the parameters [1], and generalized
sensitivity functions [5].
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