
 

 

Abstract—Implantable neurostimulators for the treatment of 

epilepsy that are capable of sensing seizures can enable novel 

therapeutic applications.  However, detecting seizures is 

challenging due to significant intracranial EEG signal variability 

across patients.  In this paper, we illustrate how a machine-learning 

based, patient-specific seizure detector provides better performance 

and lower power consumption than a patient non-specific detector 

using the same seizure library. The machine-learning based 

architecture was fully implemented in the micropower domain, 

demonstrating feasibility for an embedded detector in implantable 

systems. 

I. INTRODUCTION 

Epilepsy is a disorder of the central nervous system that 

predisposes individuals to experiencing seizures.  Despite 

advances in pharmacologic treatments, approximately 1 in 3 

patients continues to experience frequent seizures [1].  

Today, these individuals can supplement their 

pharmacologic regimen with electrical stimulation of the 

brain to better control their seizures.  Much research has 

shown that periodic, electrical excitation of various cerebral 

sites impacts the frequency of seizures [2]. 

An implantable neurostimulator capable of detecting and 

reacting to the onset of a seizure can facilitate applications 

that are not possible using devices that passively deliver a 

periodic stimulus.  The enhanced stimulator could 1) Alert 

patients of the electrical onset of a seizure before the 

development of clinical symptoms 2) Align a stimulus with 

the onset of a seizure to suppress the seizure 3) Maintain an 

account of seizure activity so that physicians can objectively 

determine the efficacy of stimulator settings.    

Performing rapid and reliable seizure onset detection on 

an implantable neurostimulator is challenging.  Algorithms 

for detecting seizure onset within Intracranial EEG (IEEG) 

signals must be capable of detecting seizures given 

substantial variability of seizure characteristics across 

patients [3], and similarity between seizure and non-seizure 

activity both within and across patients.  At the same time, 

such algorithms need to consume a small amount (~50µW) 

of the total power budget of the neurostimulator [4].   

In this paper we address the computational and 

implementation challenges associated with detecting seizure  

onset on an implantable device.  We demonstrate how 

machine learning techniques, specifically Two-Class 

Support Vector Machines (SVM) [5], can be used to 

synthesize patient-specific detectors that outperform a 

patient non-specific detector based on [6].  We also discuss 

Reduced Set Methods [7-8], a model-order reduction 

technique that enables efficient implementation of the 

discriminant functions produced by the Support Vector 

Machine learning algorithm.  Finally, we compare the power 

consumption associated with implementing the patient-

specific and patient non-specific algorithms on a neural 

integrated circuit (IC) [4] capable of low power extraction of 

IEEG signal features key to both algorithms. 

II. SEIZURE ONSET DETECTION METHODS 

A. Intracranial EEG  

Seizure onset detection is complicated by variability of 

seizure characteristics across patients [3] and similarity 

between seizure and non-seizure activity within and across 

patients.  For example, Figure 1 shows how seizures from 

patients A and B differ both in IEEG signal amplitude and 

spectral content; while Figure 2 shows the degree to which 

these characteristics can be similar for seizure and non-

seizure activity recorded from the same individual.  

 

 
 

Figure 1: Seizure of Patient A (top panel following dotted line) differs from 

seizure of Patient B (bottom panel) in signal amplitude and spectral content.   

 

 
Figure 2: Spectral content of Non-seizure activity (bottom panel) recorded 

from Patient C overlaps spectral content of seizure activity (top panel) 

recorded from the same patient.  

For a given patient, however, seizure and non-seizure 

activity tend to be stereotypical [3]; meaning an individual’s 
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seizure looks similar whenever it reoccurs.  This is 

demonstrated in Figure 3 which shows a second seizure 

from patient A. 

 
Figure 3: The second seizure from Patient A resembles the first seizure in 

signal amplitude and spectral content.  

The variability in seizure characteristics across patients 

and their consistency within a patient motivated us to adopt 

a patient-specific approach to seizure detection.  Such an 

approach uses pre-recorded seizure and non-seizure signals 

to “teach” an algorithm to differentiate between an 

individual’s seizure and non-seizure activity.  The success of 

this approach depends on the extent to which an individual’s 

seizure and non-seizure activity are similar and on the 

consistency of an individual’s seizure signature.  

B. Patient-Specific Seizure Onset Detection 

The architecture of the patient-specific detector is 

illustrated in Figure 4.  The detector extracts, from each 

channel, features that can be used to infer the presence of 

seizure activity.  Since spectral energy has been shown to be 

useful in the context of intracranial seizure detection [6, 7], 

the chosen features were the energy within the frequency 

bands 0-16Hz and 15-37Hz.  The spectral features extracted 

from each channel are then concatenated to form a 4-

dimensional feature vector in order to capture dependencies 

between the input channels.  Finally, a support-vector 

machine (SVM) trained to differentiate between a patient’s 

seizure and non-seizure activity classifies the feature vector.   

 
Figure 4: The Patient-specific detector architecture. 

 

The SVM determines whether an observed feature vector 

is representative of seizure or non-seizure activity based on 

which side of a decision boundary the feature vector falls.  

In Figure 4, we plot a nonlinear decision boundary 

separating seizure feature vectors (circles) from non-seizure 

feature vectors (crosses) in a two-dimensional space for the 

purpose of visualization; in the actual system classification 

occurs in a four-dimensional space. The decision boundary 

computed by the SVM learning algorithm can also be linear 

as illustrated in Figure 5. 

 
Figure 5: Linear and Nonlinear SVM decision boundaries. 

 

 Mathematically, the descriminant function that establishes 

whether a feature vector X  falls within the region of the 

feature space defined by seizure activity is expressed as 

follows in the case of a linear boundary 

0>+ βXW T
 

 

Where the vector W and the bias term β are parameters 

determined by the SVM learning algorithm.  In the case of a 

nonlinear boundary, determined using a radial basis kernel, 

the discriminant function takes the form shown below.  

The N coefficients iα , support-vectors iX , and bias term 

β are determined by the SVM learning algorithm, and the 

parameter 1.0=γ  is user defined.    
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The number of support-vectors N  is partly governed by 

the complexity of the classification task.  As the similarity 

between a patient’s seizure and non-seizure activity 

increases more support-vectors are needed in order to define 

a more complex decision boundary.  For our dataset, N  was 

found to be within the range of 50-300, which makes 

implementation very costly. 

The application of Reduced Set Methods [8], a model 

order reduction technique, allows the nonlinear descriminant 

function to be expressed using NM <<  support-vectors.  

As an example, Figure 6 shows the superposition of a 

nonlinear boundary requiring N=50 terms (solid line) and an 

approximation of that boundary using M=8 terms (dashed 

line).  Our evaluation of nonlinear decision boundaries used 

M=8 terms. 

 
Figure 6: Approximation of a nonlinear SVM boundary using Reduced Set 

Methods 
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C. Patient Non-specific Seizure Onset Detection  

The patient non-specific detector evaluated in this paper is 

a simplification of the Osorio-Frei seizure detector [4,6]; the 

architecture of this detector is shown in Figure 7.  The 

detector monitors, for each channel, the ratio of current and 

background energy in the 15-37Hz frequency band; the 

current energy is computed using a short time window of 2 

seconds while the background energy is computed using a 

long time window of 30 minutes. Whenever the ratio of 

foreground to background energy, on any given channel, 

exceeds a threshold � for T seconds a seizure is declared.   
 

 
Figure 7: The Patient non-specific detector architecture. 

III. TESTING METHODOLOGY AND RESULTS 

A. Data Set  

The data set used to evaluate the performance of the two 

detectors included 81 hours of intracranial EEG collected 

from 17 adult subjects.  On average, 4.5 hours of recording 

time containing 3 seizures were available per patient.  For 

each patient, an electroecnephalographer identified the onset 

time of all seizures as well as the two IEEG channels 

demonstrating the earliest signs of seizure activity; these two 

channels were the only channels processed by both 

algorithms and varied across patients. 

B. Testing Methodology 

Due to the small number of seizures available for each 

patient, a leave-one-out testing methodology was adopted. 

Consider a patient recording consisting of K ten-minute 

blocks of IEEG data containing L seizures.  The patient-

specific detector would be trained on K/2 data blocks 

containing L-1 seizures.  Next, the performance of both the 

patient-specific and patient non-specific detectors is 

assessed on the remaining K/2 blocks containing the Lth 

seizure. This is repeated L times so that the ability of both 

algorithms to detect each of the patient’s L seizures is tested.  

Once all trials are run, we note the number of seizures 

detected; the average latency with which seizures are 

detected; and the number of false detections across the L 

trials for both algorithms.  A false detection is defined as a 

detection made during any window of time noted by an 

electroencephalographer to be free of seizure activity. 

C. Performance Comparison 

The performance of the patient-specific detector using 

both linear and nonlinear SVMs was compared to the 

performance of the patient non-specific detector set to 

declare a seizure following T=3 seconds and T=10 seconds. 

Figure 8 illustrates the average latency with which the 

patient-specific and non-specific detectors declare the onset 

of a seizure for each of the 17 subjects.  The patient-specific 

detector that used a nonlinear SVM (reduced to use M=8 

terms) detected 60/61 seizures within 8.5+/-5.1 seconds; the 

same detector using a linear SVM detected 60/61 seizures 

within 9.3+/- 4.8 seconds.  The patient non-specific 

algorithm detected 55/61 seizures within 10.5+/-8.7 seconds.  

Note that the patient non-specific detector failed to detect 

the seizures of Patient 3 which accounts for the absence of a 

bar. 

Figure 8: Patient specific and non-specific detector latencies 

 

Figure 9 illustrates the number of false detections 

declared by the detectors for each of the 17 test subjects (40 

hours of test data).  The patient-specific detector employing 

a nonlinear SVM committed 19 false detections (11 false 

detections per day); the same detector using a linear SVM 

committed 28 false detections (17 false detections per day).  

The patient non-specific detector committed 126 false 

detections (75 false detections per day). 

 

 
Figure 9: Patient specific and non-specific detector false alarm counts 

 

When the patient non-specific detector was set to declare 

a seizure following T=10 seconds, it committed 17 false 

detections (10 false detections per day) as illustrated in 

Figure 10 alongside the patient-specific method’s false 

detections. 
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Figure 10: Patient specific and non-specific detector false alarm counts 

 

Furthermore, with T=10 seconds the patient non-specific 

algorithm detected 41/60 seizures within 18.7+/-10.8 

seconds as shown in Figure 11 alongside the patient-specific 

detector latencies. 

 
Figure 11: Patient specific and non-specific detector latencies 

 

This comparison demonstrates that the patient-specific 

approach detects a larger percentage of seizures with both a 

lower false-detection rate and smaller detection latency 

when compared to the patient non-specific approach.   

IV. IMPLEMENTATION 

Both the patient-specific and non-specific algorithms 

were implemented on an ultra low-power neural IC [4] 

containing an analog front-end for IEEG signal acquisition 

and extraction of power within a configurable frequency 

band.  The analog front-end is followed by a digital back-

end that samples the analog power profile; assembles these 

samples into a feature vector; and classifies the feature 

vector using the algorithms discussed in Section II.  This 

signal chain is illustrated the Figure 12. 

By delegating the feature extraction to the analog front-

end, the digital back-end remains idle until it is necessary to 

sample the power profile and test for the presence of seizure 

activity; this sampling can occur at a rate as low as 1Hz.  

Had feature extraction been delegated to the digital back-

end, then sampling would have had to occur at rate suitable 

for IEEG signals, which is typically 200-250 Hz. 

 

 
Figure 12 

Our measurements indicate that the total current drawn by 

the patient non-specific detector was 32 µA.  The patient-

specific detector drew 12µA when using a linear SVM and 

56µA when using a nonlinear SVM. These measurements 

suggest that the patient-specific detector employing a linear 

SVM exhibits the best combination of accuracy, latency, and 

power consumption. 

V. DISCUSSION AND CONCLUSION 

Patient-specific detectors synthesized using machine 

learning techniques can improve the performance of 

algorithm-driven neurostimulators.  Moreover, embedding 

these algorithms within fully implantable neurostimulators is 

possible when simple decision boundaries or model-order 

reduction techniques are applied.  Finally, it is important to 

note that a patient-specific, machine learning based detector 

requires an expert to designate non-seizure activity and 

target seizure activity in a training set; software that 

facilitates this labeling process is essential for successful 

deployment. 
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