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Abstract— Limb state feedback is of great importance for
achieving stable and adaptive control of FES neuroprostheses.
A natural way to determine limb state is to measure and
decode the activity of primary afferent neurons in the limb.
The feasibility of doing so has been demonstrated by [1] and
[2]. Despite positive results, some drawbacks in these works are
associated with the application of reverse regression techniques
for decoding the afferent neuronal signals. Decoding methods
that are based on direct regression are now favored over reverse
regression for decoding neural responses in higher regions in
the central nervous system [3]. In this paper, we apply a direct
regression approach to decode the movement of the hind limb
of a cat from a population of primary afferent neurons. We
show that this approach is more principled, more efficient, and
more generalizable than reverse regression.

I. INTRODUCTION

During movement, proprioceptors constantly assess and
relay sensory information about the physical state of the
peripheral musculature to the central nervous system (CNS).
This feedback allows the CNS an indication of the actual
state of the limb and consequently to adapt motor drive
in order to realize stable and efficient movements. When
functional electrical stimulation (FES) is used to restore
action to paralyzed limbs, a similar feedback mechanism
is required for executing complex movements and adapt
for perturbations or fatigue of the muscles. Accessing and
decoding the activity in native afferent signaling pathways
would be a natural way to determine the kinematic state (i.e.
position and velocity) of the controlled extremity [4]. Our
initial goal is therefore to predict/decode the kinematic state
of the leg using the ensemble activity of primary afferent
neurons, recorded with arrays of penetrating micro-electrodes
in the dorsal root ganglia (DRG).

Previously, reverse regression methods were used to es-
timate limb kinematics from ensembles of simultaneously
recorded primary afferent neurons in the dorsal root ganglia
of anesthetized [1] and alert, locomoting cats [2]. However,
direct regression methods are more efficient and flexible than
reverse regression approaches. Direct regression methods
include population vectors [5], optimal linear estimators [6],
maximum likelihood [7], Bayesian [8] methods, and filter-
ing/dynamic Bayesian methods [9]. See [10] for a review and
references therein. Our goal for this paper is to determine if
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the simplest likelihood method can improve upon reverse
regression to decode limb position from the spiking activity
of a small ensemble of primary afferent neurons.

II. METHODS AND DATA

A. The experiment

Center-out patterns in a 2-dimensional plane were imposed
on the hind limb of an anesthetized cat by a robotic arm
(figure 1:b). These movements spanned a significant part of
the range of motion for the limb. See Stein et al. [1] for
complete details.

The ankle (A1), knee (A2), and hip (A3) angles of the hind
leg were recorded at 120 Hz with a high speed video capture
system using markers placed at the Iliac Crest (IC), Hip,
Knee, Ankle and Metatarsophalangeal (MTP) joints (figure
1:c). Figure 2 shows the recorded joint angles of knee and
ankle as functions of experimental time during one trial of
the experiment. The trials were repeated to create separate
data sets for model fitting (i.e. encoding) and testing (i.e.
decoding).

Primary afferent neurons were recorded using penetrating
microelectrode arrays with 50 and 40 electrode sites (5x10
and 4x10, 400µm spacing). The arrays were inserted in the
L7 and L6 dorsal root ganglion using a high velocity inserter.
The neural signals were acquired with a sampling frequency
of 30 kHz and bandpass filtered with cutoff frequencies
of 100Hz - 3000Hz. Spikes were sorted offline via cluster
analysis; figure 1:a shows the raster plot of the spike trains
of 15 neurons. We then smoothed the spike trains using a
one-sided normal distribution kernel with SD 0.15 sec. We
denote by FRi the resulting firing rate of neuron i.

B. Reverse regression

Reverse regression/correlation was used previously to es-
timate angular positions and velocities for the hip, knee, and
ankle joints [11], [1]. The “reverse” describes the reversal
of the natural roles played by the stimulus and spike-
activity response. Although in reality, it is the neural activity
that varies as a function of joint angular position, reverse
regression treats the firing rates as if they were the inputs
(the x’s in regression notation), while the joint angles are
considered the output (the Y variable). That is, the joint
angles Ak, k = 1,2,3, are expressed as

Ak = βk0 + ∑
i∈Sk

βkiFRi (1)

where FRi is the firing rate of neuron i, and Sk indexes the
set of neurons whose firing rates correlate most strongly with
Ak [1]. Then given a training set of angles and firing-rate
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Fig. 1. a) Responses of different neurons to passive movement of the leg.
Each vertical line represents an action potential. b) The endpoint kinematics
of the hindlimb during passive center-out movement. This movement is
imposed on the hindlimb using a robotic manipulator. c) Schematic of the
hindlimb; joint angles are being decoded to represent the kinematic state of
the limb.

combinations, one computes the usual least-squares estimates
β̂ of the β ’s; this step is usually referred to as encoding. In
the decoding stage, given the firing rates FR∗

i of all neurons
in a small window of time, the predictor of joint angle k is
then

A∗
k = β̂k0 + ∑

i∈Sk

β̂kiFR∗
i

To allow for the possibility that the relationships between
neurons’ firing rates and joint angles are not linear, we will
consider in place of Eq.1 the more flexible non-parametric
generalization

A = β0 +
N

∑
i=1

si(FRi)

where the si(.) are taken to be moving lines with 4 non-
parametric degrees of freedom (DOF).

C. Direct regression methods

Direct regression methods include population vectors, op-
timal linear decoding, as well as likelihood-based and dy-
namic decoding. Firing rates are considered random variables
whose distributions, often just the means, vary with joint
angles. Assuming that firing rates are approximately normal
with constant variances σ2

i , the simplest relationship one
could consider for neuron i is

FRi = α0i +α1iA1 +α2iA2 +α3iA3 +σ2
i εi, (2)

i = 1, . . . ,N, where εi are standard normal random errors.
Note that Eq. 2 specifies one relationship per neuron, whereas
Eq. 1 specifies one relationship per angle. Then given a
training set of angles and firing-rate combinations, encoding
consists of computing the maximum likelihood/least-squares
estimates of the α ji and σ2

i . In the decoding stage, the
observed firing rates FR∗

i of all neurons in a small window of
time are each assumed to have distributions specified by Eq.
2, where the α ji and σ2

i are now taken to be equal to their

estimates from encoding. The predictor of joint angle is then
the least square/maximum likelihood estimate of (A1,A2,A3)
obtained from the set of N models in Eq. 2, i = 1, . . . ,N.

Eq. 2 is the simplest firing rate model we could consider.
To allow for non-linear relationships between firing rates and
angles, we will instead use s ji(A j) in place of α jiA j, j =
1,2,3, where s ji(.) are splines with 4 non-param. DOF. Our
model will also include interactions between pairs of joint
angles, to allow for the possibility that relationships between
firing rates and a particular angle vary with another angle.
The data supports this possibility, as illustrated by Figure 3.
We also considered hind limb biomechanics and physiology
to guide our choice of physiologically plausible firing rate
models: muscle afferents (i.e. primary and secondary muscle
spindles, tendon organs) encode maximally two out of the
three joint angles (bi-articulate muscles span either hip/knee
or knee/ankle). Therefore, each neuron is modeled to encode
either for one angle (hip, ankle or knee), or for two angles
(hip and knee or ankle and knee). That is, for each neuron
i, we considered the two families of firing rate models

FRi = α0i + s ji(A j)+ ski(Ak)+ s ji(A j) : ski(Ak)+σ2
i εi, (3)

for j,k = 1,2 (ankle/knee) and j,k = 2,3 (knee/hip), where
s ji(A j) : ski(Ak) denotes an interaction between angles j and
k, and within these two families of models, we determined
the statistical significance of each term using the Bayesian
information criterion (BIC) and selected the best model based
on this measure.

D. Contrasting methods
Direct regression offers several theoretical advantages over

reverse regression. In direct regression, all angles are allowed
to contribute to explaining the firing rates of each neuron,
whereas in reverse correlation, angles are each decoded
separately, using different groups of neurons. From a phys-
iological view point, direct regression is more appropriate
because Eq. 2 attempts to model how each neuron encodes
joint angles, whereas there is no physiological basis for Eq.1.

From an efficiency view point, if all neurons encoded
single joint-angles, both methods should predict approxi-
mately similar trajectories. As most muscles span multiple
joints, responses from muscle afferents code for multiple
angles simultaneously. Fig. 3 shows an example of a neuron
whose firing rate depends not only on the hip angle but also
on the knee angle. Reverse regression decodes each angle
separately so it cannot properly extract the information in
firing rates about several angles. In contrast, direct regression
makes efficient use of this information provided the firing
rate model in Eq. 3 is accurate. For example, if one of the
joint angles is consistently better represented in the afferent
data set, the weaker contributor will be poorly estimated
by a reverse regression method. On the other hand, direct
regression combines the information of strongly and weakly
encoded angles to improve the prediction of both.

III. RESULTS
We first selected the best 25 neurons, encoded using

the first center-out movement sequence of the experiment,
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Fig. 2. True knee and ankle trajectories (solid thin curves), along with
decoded trajectories using reverse regression (dashed) and direct regression
(solid). Decoded trajectories are based on the 25 neurons which are best
explained by the kinematic variables (higherst R2) during the training phase.

and decoded with the second center-out movement trial.
Fig. 2 shows true knee and ankle trajectories, along with
the decoded trajectories using reverse and direct regression.
Ankle and hip angles gave similar results so we do not
show the latter. The two decoding methods produce visually
comparable results.

The integrated squared error (ISE) provides a more quan-
titative assessment of efficiency. For a particular data set, the
ISE is the squared difference between the decoded and actual
trajectories, integrated over all time bins. For this particular
experiment, the time bins corresponding to the rest position
account for over half of all bins. We therefore downweighted
these bins so that their contribution would be comparable
to the contribution of each of the 8 angle configurations.
The ISE is a useful efficiency measure because it typically
decreases proportionally to the inverse of the number of
neurons. Therefore, based on this measure, the accuracy
of a method based on N1 neurons will be comparable to
the accuracy of another method based on N2 neurons when
N2 = N1 ×R, where R = ISE1/ISE2 is the ratio of the ISEs
of the two methods.

The ISE ratios for knee and ankle in Fig. 2 are 1.12 and
0.97 respectively which indicates both methods are approxi-
mately equally efficient. This is somewhat surprising because
most neurons actually encode more than one joint angle.
Indeed, when we consider Figure 3, which shows the firing
rate of a typical neuron versus hip angle: the relationship
is not random, which suggests that this neuron encodes
for hip angle. Note also that the + and o plotting symbols
correspond to small and large knee angles respectively: the
two sets of symbols hardly overlap, which suggest that the
neuron also encode information about knee angle. Moreover,
the relationship between firing rate and hip angle varies
with knee angle, which suggests an interaction between hip
and knee angles. These characteristics are common to most
afferent neurons we examined.
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Fig. 3. Firing rate of a typical neuron varies with hip angle, in response
to passive movement of the leg. The + and o plotting symbols correspond
to large and small knee angles resp. A spline was fitted through each of the
two subsets and is plotted as a dashed line. The clear separation between
the lines indicate that the neuron encodes for knee angle as well as hip
angle.

Because direct regression models how each neuron en-
codes information about joint angles, it makes better use of
the information about angles in the neurons’ firing rates. The
comparatively good efficiency of reverse regression might
be due to robustness against model mispecifications: while
reverse regression uses one model per angle, direct regression
specifies a different model for each neuron, so that even
minor model mispecifications can add up across neurons.
It also might be attributed to the number of neurons used
and the careful selection of the neurons used to predict limb
kinematics. The results in Fig. 2 used 25 neurons from 2
recording sites. We are unlikely to have that many well
defined neurons in practice, so we are interested in the
performance of the two methods given neuron populations
of different sizes.

Fig 4 shows the result of the following analysis. We first
selected a pool of neurons encoding “well” for knee and
ankle angles: we regressed the firing rates of all neurons on
a smooth function of knee and ankle angles, and retained
only the neurons for which the two angles explained more
than 40% of firing rate variations. We thus retained 64 of the
153 total neurons. We then selected m neurons at random
out of this pool of 64 neurons, decoded knee and ankle
trajectories using these m neurons using reverse and direct
regression, and calculated the ISE ratio of the two methods.
We repeated this 99 more times to obtain 100 ISE values,
which we plotted versus m as a violin in Fig. 4. We repeated
this simulation for several values of m.

Direct regression has clear advantages over the inverse
regression methods for all number of included neurons for
the knee and up to 20 neurons for the ankle. This agrees
with the fact that most neurons primarily encode ankle angle
and that only direct regression can extract knee information
from those neurons. However, when using higher neuron
counts, the sensitivity of the direct regression approach to
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Fig. 4. Violin plots of 100 ISE ratios for several neuron population size m.
The mark at the center is at the median. Violin plots are similar to boxplots
but they provide more information: they show the full smooth histogram of
the data (here the 100 ISEs) whereas boxplots would only show quartiles and
outliers. Independent of the available neural population, reverse regression
would need approx 25% more neurons to be as efficient as direct regression
to decode knee angle.

inaccuracies in the individual firing rate models becomes
problematic, giving reverse regression methods an advantage.

IV. DISCUSSION

The results show that direct regression methods are more
efficient in using all information from afferent firing rates
which is predominantly due to the ability to include multiple
joint angles in a single model. Being more efficient, this
method requires fewer neurons to predict limb kinematics
accurately. Although the CNS might not be sensitive to
confounding information due to the large redundancy in the
primary afferent population, the implications are more severe
for neuroprosthetics which have access to a limited subset
of the neural population. For practical reasons, it is desirable
to use a decoding method that extracts the information as
efficiently as possible.

Reverse regression treats each kinematic parameter as an
independent decoding problem and will therefore suffer due
to confounded information. The ability of direct regression
to use this information results in a better effective use of the
afferents predominantly in the kinematic variables that are
poorly represented in the neural population (i.e. A2).

The direct regression method also truly models the
stimulus-response encoding properties of each neuron. In
contrast to reverse regression, where model coefficients are
arbitrary, direct regression coefficients convey information
to what is encoded by each individual neuron. Insight into
what the neurons encode is therefore apparent from the fitted
models. Classification of the origin of a particular neuron
can theoretically be extracted from the model parameters.
Although, as noted in the results section, model selection
should include more complex and afferent modality specific
models to predict neural type accurately.

Because of its flexibility, it is possible to improve the esti-
mate accuracy by improving the firing rate models. Although
a basic model was chosen to demonstrate the possibilities
in this paper, there are several more sophisticated models
of muscle spindles suggested in the literature. [12], [13],
[14] Any of those models can theoretically be implemented
using direct regression methods and will contribute to the
prediction accuracy. Fig. 2 shows large overshoots during the
reaching movements. It is believed that the dynamic compo-
nent of primary muscle spindles is one of the leading causes
for this behavior. Including a velocity component is only
possible when decoding using direct regression methods and
will likely improve the accuracy of the estimated kinematic
limb state.
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