31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

SIMENGINE: A Low-Cost, High-Performance Platform for
Embedded Biophysical Simulations

Randall K. Weinstein, Christopher T. Church, Carl S. Lebsack, Joshua E. Cook, and Michael E. Sorensen
Simatra Modeling Technologies
Atlanta, Georgia 30308
Email: info@simatratechnologies.com

Abstract—Numerical simulations of dynamical systems are an
obvious application of high-performance computing. Unfortu-
nately, this application is underutilized because many modelers
lack the technical expertise and financial resources to lever-
age high-performance computing hardware. Additionally, few
platforms exist that can enable high-performance computing
with real-time guarantees for inclusion into embedded systems
— a prerequisite for working with medical devices. Here we
introduce SIMENGINE, a platform for numerical simulations of
dynamical systems that reduces modelers’ programming effort,
delivers simulation speeds 10-100 times faster than a conventional
microprocessor, and targets high-performance hardware suitable
for real-time and embedded applications. This platform consists
of a high-level mathematical language used to describe the
simulation, a compiler/resource scheduler that generates the
high-performance implementation of the simulation, and the
high-performance hardware target. In this paper we present an
overview of the platform, including a network-attached embed-
ded computing device utilizing field-programmable gate arrays
(FPGAs) suitable for real-time, high-performance computing.
We go on to describe an example model implementation to
demonstrate the platform’s performance and describe how future
development will improve system performance.

[. INTRODUCTION

Numerical simulations of dynamical systems are an indis-
pensable research tool for fields as diverse as biology, electron-
ics, economics, and climatology. These fields all use numerical
simulations to explain how systems behave and to guide the
development of new technologies and products. The structure
of these models naturally lends itself to implementation in
high-performance computing applications[1], [2], [3].

Unfortunately, high-performance computing is underuti-
lized because of the difficulty and expense of creating high-
performance simulations. Scientists and engineers who de-
velop models and simulations (“modelers”) often lack the
technical expertise to build robust, high-performance imple-
mentations of their models. Although modelers understand the
math and the science underlying the construction of their mod-
els, they are frequently unfamiliar with the nuances of high-
performance programming — such as threading, vectorization,
and resource scheduling — that produce high-performance
simulations. As a result, modelers must rely on others to
create high-performance code for them, adding an undesirable
delay and additional cost to their simulations. Finally, many
modelers lack the financial resources to acquire or maintain
large, high-performance computing systems.

Additionally, real-time simulations that can be used to
“close the loop” with the real world are becoming increas-

978-1-4244-3296-7/09/$25.00 ©2009 IEEE

ingly important in basic research, laboratory instrumentation,
and clinical applications. Traditional hardware used for high-
performance computing, such as computer clusters, supercom-
puters, and graphics processing units (GPUs), lack real-time
interfaces and scheduling capabilities and hence can not be
used in for real-time applications. In addition, these systems
are often too large, too costly, or consume too much power
to be included in embedded applications. On the other hand,
hardware used for embedded computing, such as programm-
able logic controllers (PLCs), digital signal processors (DSPs),
and field-programmable gate arrays (FPGAs), either lack the
computational horsepower required for complex numerical
simulations or are prohibitively difficult to program for mod-
elers without experience in hardware design.

To address these problems, we have developed SIMENGINE,
a platform for numerical simulation of dynamical systems.
Although we initially developed this platform as a tool for
computational biologists, the design of SIMENGINE is such
that it can be applied to a broad range of applications in the
natural and engineering sciences. This platform is composed
of three components: a high-level mathematical description
language that enables modelers to describe their simulations
in straightforward terms, a compiler that translates the sim-
ulation description into high-performance code, and a high-
performance hardware target. The goal of the SIMENGINE
platform is to enable high-performance simulation for individ-
ual modelers. Therefore, our current development has focused
on low-cost, low-power hardware systems that can be easily
installed and maintained by the end user, such as multi-core
processors, GPUs, and FPGAs.

Here, we discuss the ability of SIMENGINE to target FPGAs:
reconfigurable semiconductor devices containing many dis-
crete programmable logic blocks that can be configured to
perform a set of custom computations. In effect, a cus-
tom processor is created for each model, providing a per-
formance gain 10-100x that of a standard single core
general-purpose microprocessor, along with substantial ben-
efits for power consumption[4]. Additionally, FPGAs are fre-
quently used as embedded computing devices, and have been
shown to be an ideal target for high-performance, real-time
computing[2]. Although FPGAs are notoriously difficult to
program, the SIMENGINE platform automatically translates
high-level model descriptions into FPGA-compatable code,
substantially reducing the programming effort on the part of
the modeler.

4238

II. PLATFORM ARCHITECTURE

The SIMENGINE platform is built on three components:
a model description language, a compiler, and a high-
performance hardware device. Together, these three compo-
nents enable modelers to easily describe their models and sim-
ulations, automatically build a high-performance simulation
engine from their model description, and execute that simula-
tion engine on a customized, high-performance processor.

A. Model Description Language

The front-end to the SIMENGINE platform is a domain-
specific, dynamical system language (DIESEL) that allows
modelers to describe their systems in straightforward math-
ematical terms. DIESEL is a fully-featured functional and
object-oriented programming language. It incorporates a
framework of data types based on concepts familiar to model-
ers, such as states, parameters, constants, and outputs, and also
includes language primitives for differential and difference
equations.

A DIESEL model description defines states in terms of
equations that characterize the evolution of the system from
one simulation iteration to the next. Parameters are input
quantities whose value is defined by the user at runtime.
Constants are unchanging input quantities defined at compile
time. Outputs may correspond to states, or they may repre-
sent intermediate quantities, which are computed from states,
parameters, and constants.

Figure 1 shows an example of DIESEL code implementing
the Lorenz attractor, a chaotic dynamical system described by
the following equations:

d

= = o2 (1)
dy

= = a-2) -y @
dz

== ay-p 3)

model Lorenz

state x (=100 to 100 by 1le-8) =0
state y (=100 to 100 by 1le-8) = 0
state z (=100 to 100 by 1le-8) = 0

parameter sigma (0 to 20 by 0.1) = 10
parameter rho (0 to 30 by 0.1) = 28
parameter beta (0 to 10 by 0.01) = 8/3

equations

%’ = sigmax (y—x)
y’ = zx(rho - z) -y
7z’ = xxy — betaxz
end
solver = forwardeuler (0.001)
end
Fig. 1. An example of DIESEL code representing the equations governing

the Lorenz attractor.

B. Compiler

The SIMENGINE compiler translates a DIESEL model de-
scription into high-performance code. The compiler operates in
two phases: a parsing phase that interprets the DIESEL model
syntax into a flexible, graph-based internal representation, and
an optimizing phase that translates the internal representation
into efficient, targeted code, creating a custom simulation
engine for the user’s model (see Figure 2).

Diesel Modeling Language

;;:;:\ete; glqm - 10 std_logic_vector (27 downto 0) ;
equations
L e port map
yfx*rhOfoy din =>
oni dout => dout vm)

Fig. 2.
compiler.

Abstract Internal Representation Hardware Description Language

Schematic depiction of the flow of data through the SIMENGINE

The parsing phase of the SIMENGINE compiler translates
a DIESEL model description into an abstract representation,
suitable for targeting various simulation platforms. The com-
piler interprets the model description, producing a list of
differential and difference equations that define the changes
in state values over time. The parser transforms differential
equations and higher-order difference equations into first-order
difference equations. These equations make up the abstract
model representation in the form of directed flow graphs.

In the optimization phase, several transformations are per-
formed on the internal representation. For example, the op-
timizer consolidates redundant expressions, simplifies alge-
braic expressions, and removes constant evaluations from the
iteration loop. Additional optimizations may be performed
depending on the final hardware target. For instance, when tar-
geting an FPGA, the optimizer converts numerical operations
to use fixed-point data, constructs look-up tables for estimating
bounded functions, and applies an heuristic mapping algorithm
to optimally allocate hardware resources.

At the end of the optimization phase, the SIMENGINE
compiler generates targeted excution code for one or more
simulation engines. For instance, the generated code may
include a Verilog implementation of the engine for the FPGA
simulation target as well as C code implementing a software
simulation. The compiler also generates the communications
channel between the simulation engine and the client user
interface. Additionally, when targeting the FPGA hardware
device, the compiler automatically uses the Xilinx ISE! toolkit
to synthesize the Verilog implementation into a bitstream and
to program the bitstream onto the FPGA.

C. Hardware Platform

The FPGA hardware platform described herein is the pro-
totype of a network-attached computing appliance currently
under development. (Figures 3 and 4) This device contains
two Xilinx Virtex-4 family FPGAs?. The primary FPGA is the

UISE is a registered trademark of Xilinx, Inc.
2Xilinx and Virtex-4 are registered trademarks of Xilinx, Inc.

4239

C°?g‘g:ﬁ°n SO0 Host FPGA
Gigabit Simulation
Virtex-4 Virtex-4 Ethernet Client
XCAVSX35 F>oooc] XC4VFX12
—

Fig. 3. The computation FPGA is a Xilinx Virtex-4 XC4VSX35 FPGA. The
host FPGA is a Xilinx Vertex-4 XC4VFX12 FPGA, incorporating a PowerPC
405 core and a Gigibit Ethernet interface. The two FPGAs are interconnected
via a 2 Gbps proprietary interface.

Fig. 4. The prototype hardware device.

computation FPGA, which implements the high-performance
simulation engine. The computation FPGA contains 192 18-bit
by 18-bit signed multipliers, 192 18-bit by 1024 element block
RAMs, and 15,360 basic logic blocks. Each basic logic block
contains two binary look-up tables (LUTs) and two single-
bit registers. The second FPGA 1is the host FPGA, which
provides the communications link between the computation
FPGA and the simulation client, where the user issues sim-
ulation commands and receives output data. The host FPGA
incorporates a PowerPC core running an embedded OS, which
manages a Gigabit Ethernet interface between the device and
the simulation client. The computation FPGA and host FPGA
are connected via a proprietary high-speed data interconnect.
The total cost of the hardware platform is less than a high-
end computer workstation, placing it well within the financial
reach of most researchers.

In an embedded configuration, digital I/O ports can be
exposed for direct data interfaces between the model controller
of the computation FPGA and external sensors, filters, or
data converters. The efficient implementation of a model may
execute much faster than the actual process being simulated. In
this case, the simulation rate of the engine may then be tuned
by adding delays or integrator enables in order to match the
simulation’s time scale to the computation time scale, enabling
the potential for real-time interfacing.

III. PERFORMANCE RESULTS

We now illustrate the performance of the SIMENGINE
platform through a case study of a stomatogastric (STG) neural
model[5]. This section first describes the STG model, then
describes its implementation using the SIMENGINE platform,
and then discusses model performance on the FPGA hardware
target.

A. STG model description

The STG model represents a neuron from the stomatogastric
ganglion of the lobster. The behavior of the STG neuron
model is characterized by the shape of the voltage trajectory
of the membrane potential. The STG model has three main
behavior types: silent, spiking and bursting. One spiking and
two bursting behaviors are illustrated in the voltage traces
found in Figure 5. These behaviors are distributed across the
parameter space and can be further subdivided based on resting
potential, spike frequency, spikes per burst, and burst area.

The STG model was chosen for this case study as it
is characteristic of many conductance-based physiologically-
grounded neural models. Full details of the model description
and the full equations can be found in [5].

STG Model Representative Voltage Traces

60 ;
single burst ------—

burst

40 +

20

Membrane Potential (mV)

i n’ll

80 s L s L L s L
0 200 400 600 800 1200 1400

Time (ms)

-60 F

Fig. 5. Distinct model behaviors of the STG model. Traces taken from FPGA
hardware using the SIMENGINE platform.

B. STG model implementation

Using DIESEL the entire STG model is represented with
only sixty lines of code, compared to nearly one thousand
lines of C++ used in the original study. This reduction in code
size represents a substantial decrease in programmer overhead,
allowing modelers to more easily implement complex models
in less time than with traditional approaches.

This small code size is enabled by several features of the
DIESEL language and the SIMENGINE platform. First, the
DIESEL language was designed to provide a terse represen-
tation of mathematical equations that resemble their canonical
forms. Second, the language is designed around dynamical

4240

system models and provides the use of libraries of commonly
used constructs such as integration methods. Finally, the
SIMENGINE platform automatically produces all of the glue
code and logic to enable the user to interact and communicate
with a running model.

C. STG Results

The performance of the DIESEL STG model on the
SIMENGINE FPGA platform is more than adequate for real-
time computation. With a time step of 0.05 ms (the time step
used in [5]), the computation FPGA can be run at 80 MHz. It
takes 41 cycles to compute a single iteration of the model. The
data interface to the FPGA imposes a minimal performance hit
to the simulation rate, and as a result the resulting simulation
can be run at 97.6x the speed of real time. For comparison,
the same model implemented in C by SIMENGINE on a
2.5 GHz Intel processor executes at only 6.7x real time.
The FPGA therefore provides a nearly 15-fold improvement
in performance over a conventional microprocessor, with the
added benefit that the FPGA can be readily incorporated into
a embedded system for interfacing with physical systems.
Additionally, we expect that continued development of the
SIMENGINE platform will yield improved performance, pro-
ducing FPGA-based simulations with greater than a 100-fold
gain in performance over a microprocessor. From previous
studies of hand-built FPGA-based simulations[2], [3], these
expected improvements are quite realistic.

The FPGA implementation of the STG model produces
results representative of those found in the original study.
Example activity taken from the FPGA is shown in Figure 5.
There are, however, certain differences between FPGA and
microprocessor-based implementation, which can cause the
results to diverge slightly from the original study. These are:

o Fixed-point numerics: FPGAs used fixed-point repre-
sentations of numbers rather than the floating-point
representation used in general-purpose microprocessors.
SIMENGINE automatically generates appropriate fixed-
point ranges and precisions for the FPGA-based imple-
mentation to minimize the difference between floating-
and fixed-point simulations.

o Look-up tables: Functions that are difficult to compute,
such as transcendental functions, are approximated using
look-up-tables. This technique is similar to the technique
used in many microprocessor-based simulators to im-
prove simulation speeds [6], but will be slightly different
than when the functions are explicitly solved.

o Method of integration: The forward-Euler integration
method was used for the STG’s membrane potential on
the FPGA, whereas in the original study the exponential-
Euler method was used. This change caused slight
changes in behavior at the boundary between different
activities (such as the boundary between spiking and
bursting behavior).

Altogether, the differences in behavior between the fixed-

point and floating-point simulations were minimal. Further-
more, like the original model, the auto-generated FPGA sim-

ulation engine produces output behaviors similar to those
observed empirically from biological neurons. Future im-
provements to the SIMENGINE platform will further minimize
the differences between the FPGA-based simulation and its
floating-point counterpart.

IV. CONCLUSION

The SIMENGINE platform is the first platform designed
to map high-level descriptions of dynamical systems auto-
matically to an FPGA implementation. FPGAs are an ideal
platform for realizing complex, computationally-intensive ap-
plications for both high-performance computing and embed-
ded systems. By utilizing an FPGA, biophysical models can
be simulated at orders of magnitude greater rates than with
conventional processors and at significantly less cost than
multiprocessor clusters or supercomputers. Furthermore, real-
time guarantees available through FPGAs provide a path for
embedded simulations of models that are too complex or
have time scales too fast for traditional real-time OS or DSP
technologies.

The results presented here used an FPGA from the Virtex-4
family of Xilinx FPGAs. Future development will update
the FPGA hardware target to use either Virtex-5 or Virtex-6
FPGAs, which will provide improved performance and ca-
pacity. These benefits will allow for more complex and time-
critical simulations to be implemented on the hardware target.
Additionally, built-in GPIO banks will provide additional
expandability and interfacing options.

V. ACKNOWLEDGEMENTS

Thanks to Dr. Robert Lee of Emory University Dept. of
Biomed. Eng. for his advice on this project. This work was
supported through NINDS SBIR award NS057859.

REFERENCES

[1] R. Weinstein, M. Reid, and R. Lee, “Methodology and Design Flow for
Assisted Neural-Model Implementations in FPGAs,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 15, no. 1, pp. 83—
93, 2007.

[2] E. Graas, E. Brown, and R. Lee, “An FPGA-based approach to high-
speed simulation of conductance-based neuron models,” Neuroinformat-
ics, vol. 2, no. 4, pp. 417-435, 2004.

[3] M. Sorensen and S. DeWeerth, “Functional Consequences of Model
Complexity in Rythmic Systems: I. Systematic Reduction of a Bursting
Neuron Model,” Journal of Neural Engineering, vol. 1, no. 4, pp. 179—
188, 2007.

[4] D. Thomas, L. Howes, and W. Luk, “A comparison of CPUs, GPUs,
FPGAs, and massively parallel processor arrays for random number
generation.,” in Procedding of the ACM/SIGDA international Symposium
on Field Programmable Gate Arrays., pp. 63-72, 2009.

[S] A. Prinz, C. Billimoria, and E. Marder, “Alternative to hand-tuning
conductance-based models: construction and analysis of databases of
model neurons,” Journal of neurophysiology, vol. 90, no. 6, pp. 3998—
4015, 2003.

[6] J. Bower and D. Beeman, The Book of GENESIS: Exploring Realistic
Neural Models with the GEneral NEural SImulation System. Springer,
2003.

4241

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

