
SIMENGINE: A Low-Cost, High-Performance Platform for

Embedded Biophysical Simulations

Randall K. Weinstein, Christopher T. Church, Carl S. Lebsack, Joshua E. Cook, and Michael E. Sorensen

Simatra Modeling Technologies

Atlanta, Georgia 30308

Email: info@simatratechnologies.com

Abstract—Numerical simulations of dynamical systems are an
obvious application of high-performance computing. Unfortu-
nately, this application is underutilized because many modelers
lack the technical expertise and financial resources to lever-
age high-performance computing hardware. Additionally, few
platforms exist that can enable high-performance computing
with real-time guarantees for inclusion into embedded systems
— a prerequisite for working with medical devices. Here we
introduce SIMENGINE, a platform for numerical simulations of
dynamical systems that reduces modelers’ programming effort,
delivers simulation speeds 10–100 times faster than a conventional
microprocessor, and targets high-performance hardware suitable
for real-time and embedded applications. This platform consists
of a high-level mathematical language used to describe the
simulation, a compiler/resource scheduler that generates the
high-performance implementation of the simulation, and the
high-performance hardware target. In this paper we present an
overview of the platform, including a network-attached embed-
ded computing device utilizing field-programmable gate arrays
(FPGAs) suitable for real-time, high-performance computing.
We go on to describe an example model implementation to
demonstrate the platform’s performance and describe how future
development will improve system performance.

I. INTRODUCTION

Numerical simulations of dynamical systems are an indis-

pensable research tool for fields as diverse as biology, electron-

ics, economics, and climatology. These fields all use numerical

simulations to explain how systems behave and to guide the

development of new technologies and products. The structure

of these models naturally lends itself to implementation in

high-performance computing applications[1], [2], [3].

Unfortunately, high-performance computing is underuti-

lized because of the difficulty and expense of creating high-

performance simulations. Scientists and engineers who de-

velop models and simulations (“modelers”) often lack the

technical expertise to build robust, high-performance imple-

mentations of their models. Although modelers understand the

math and the science underlying the construction of their mod-

els, they are frequently unfamiliar with the nuances of high-

performance programming — such as threading, vectorization,

and resource scheduling — that produce high-performance

simulations. As a result, modelers must rely on others to

create high-performance code for them, adding an undesirable

delay and additional cost to their simulations. Finally, many

modelers lack the financial resources to acquire or maintain

large, high-performance computing systems.

Additionally, real-time simulations that can be used to

“close the loop” with the real world are becoming increas-

ingly important in basic research, laboratory instrumentation,

and clinical applications. Traditional hardware used for high-

performance computing, such as computer clusters, supercom-

puters, and graphics processing units (GPUs), lack real-time

interfaces and scheduling capabilities and hence can not be

used in for real-time applications. In addition, these systems

are often too large, too costly, or consume too much power

to be included in embedded applications. On the other hand,

hardware used for embedded computing, such as programm-

able logic controllers (PLCs), digital signal processors (DSPs),

and field-programmable gate arrays (FPGAs), either lack the

computational horsepower required for complex numerical

simulations or are prohibitively difficult to program for mod-

elers without experience in hardware design.

To address these problems, we have developed SIMENGINE,

a platform for numerical simulation of dynamical systems.

Although we initially developed this platform as a tool for

computational biologists, the design of SIMENGINE is such

that it can be applied to a broad range of applications in the

natural and engineering sciences. This platform is composed

of three components: a high-level mathematical description

language that enables modelers to describe their simulations

in straightforward terms, a compiler that translates the sim-

ulation description into high-performance code, and a high-

performance hardware target. The goal of the SIMENGINE

platform is to enable high-performance simulation for individ-

ual modelers. Therefore, our current development has focused

on low-cost, low-power hardware systems that can be easily

installed and maintained by the end user, such as multi-core

processors, GPUs, and FPGAs.

Here, we discuss the ability of SIMENGINE to target FPGAs:

reconfigurable semiconductor devices containing many dis-

crete programmable logic blocks that can be configured to

perform a set of custom computations. In effect, a cus-

tom processor is created for each model, providing a per-

formance gain 10–100× that of a standard single core

general-purpose microprocessor, along with substantial ben-

efits for power consumption[4]. Additionally, FPGAs are fre-

quently used as embedded computing devices, and have been

shown to be an ideal target for high-performance, real-time

computing[2]. Although FPGAs are notoriously difficult to

program, the SIMENGINE platform automatically translates

high-level model descriptions into FPGA-compatable code,

substantially reducing the programming effort on the part of

the modeler.

4238

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE

4239

4240

system models and provides the use of libraries of commonly

used constructs such as integration methods. Finally, the

SIMENGINE platform automatically produces all of the glue

code and logic to enable the user to interact and communicate

with a running model.

C. STG Results

The performance of the DIESEL STG model on the

SIMENGINE FPGA platform is more than adequate for real-

time computation. With a time step of 0.05 ms (the time step

used in [5]), the computation FPGA can be run at 80 MHz. It

takes 41 cycles to compute a single iteration of the model. The

data interface to the FPGA imposes a minimal performance hit

to the simulation rate, and as a result the resulting simulation

can be run at 97.6× the speed of real time. For comparison,

the same model implemented in C by SIMENGINE on a

2.5 GHz Intel processor executes at only 6.7× real time.

The FPGA therefore provides a nearly 15-fold improvement

in performance over a conventional microprocessor, with the

added benefit that the FPGA can be readily incorporated into

a embedded system for interfacing with physical systems.

Additionally, we expect that continued development of the

SIMENGINE platform will yield improved performance, pro-

ducing FPGA-based simulations with greater than a 100-fold

gain in performance over a microprocessor. From previous

studies of hand-built FPGA-based simulations[2], [3], these

expected improvements are quite realistic.

The FPGA implementation of the STG model produces

results representative of those found in the original study.

Example activity taken from the FPGA is shown in Figure 5.

There are, however, certain differences between FPGA and

microprocessor-based implementation, which can cause the

results to diverge slightly from the original study. These are:

• Fixed-point numerics: FPGAs used fixed-point repre-

sentations of numbers rather than the floating-point

representation used in general-purpose microprocessors.

SIMENGINE automatically generates appropriate fixed-

point ranges and precisions for the FPGA-based imple-

mentation to minimize the difference between floating-

and fixed-point simulations.

• Look-up tables: Functions that are difficult to compute,

such as transcendental functions, are approximated using

look-up-tables. This technique is similar to the technique

used in many microprocessor-based simulators to im-

prove simulation speeds [6], but will be slightly different

than when the functions are explicitly solved.

• Method of integration: The forward-Euler integration

method was used for the STG’s membrane potential on

the FPGA, whereas in the original study the exponential-

Euler method was used. This change caused slight

changes in behavior at the boundary between different

activities (such as the boundary between spiking and

bursting behavior).

Altogether, the differences in behavior between the fixed-

point and floating-point simulations were minimal. Further-

more, like the original model, the auto-generated FPGA sim-

ulation engine produces output behaviors similar to those

observed empirically from biological neurons. Future im-

provements to the SIMENGINE platform will further minimize

the differences between the FPGA-based simulation and its

floating-point counterpart.

IV. CONCLUSION

The SIMENGINE platform is the first platform designed

to map high-level descriptions of dynamical systems auto-

matically to an FPGA implementation. FPGAs are an ideal

platform for realizing complex, computationally-intensive ap-

plications for both high-performance computing and embed-

ded systems. By utilizing an FPGA, biophysical models can

be simulated at orders of magnitude greater rates than with

conventional processors and at significantly less cost than

multiprocessor clusters or supercomputers. Furthermore, real-

time guarantees available through FPGAs provide a path for

embedded simulations of models that are too complex or

have time scales too fast for traditional real-time OS or DSP

technologies.

The results presented here used an FPGA from the Virtex-4

family of Xilinx FPGAs. Future development will update

the FPGA hardware target to use either Virtex-5 or Virtex-6

FPGAs, which will provide improved performance and ca-

pacity. These benefits will allow for more complex and time-

critical simulations to be implemented on the hardware target.

Additionally, built-in GPIO banks will provide additional

expandability and interfacing options.

V. ACKNOWLEDGEMENTS

Thanks to Dr. Robert Lee of Emory University Dept. of

Biomed. Eng. for his advice on this project. This work was

supported through NINDS SBIR award NS057859.

REFERENCES

[1] R. Weinstein, M. Reid, and R. Lee, “Methodology and Design Flow for
Assisted Neural-Model Implementations in FPGAs,” IEEE Transactions

on Neural Systems and Rehabilitation Engineering, vol. 15, no. 1, pp. 83–
93, 2007.

[2] E. Graas, E. Brown, and R. Lee, “An FPGA-based approach to high-
speed simulation of conductance-based neuron models,” Neuroinformat-

ics, vol. 2, no. 4, pp. 417–435, 2004.
[3] M. Sorensen and S. DeWeerth, “Functional Consequences of Model

Complexity in Rythmic Systems: I. Systematic Reduction of a Bursting
Neuron Model,” Journal of Neural Engineering, vol. 1, no. 4, pp. 179–
188, 2007.

[4] D. Thomas, L. Howes, and W. Luk, “A comparison of CPUs, GPUs,
FPGAs, and massively parallel processor arrays for random number
generation.,” in Procedding of the ACM/SIGDA international Symposium

on Field Programmable Gate Arrays., pp. 63–72, 2009.
[5] A. Prinz, C. Billimoria, and E. Marder, “Alternative to hand-tuning

conductance-based models: construction and analysis of databases of
model neurons,” Journal of neurophysiology, vol. 90, no. 6, pp. 3998–
4015, 2003.

[6] J. Bower and D. Beeman, The Book of GENESIS: Exploring Realistic

Neural Models with the GEneral NEural SImulation System. Springer,
2003.

4241

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

