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Abstract— We present a coarse-grained red blood cell (RBC)
model with accurate and realistic mechanical properties, rhe-
ology and dynamics. The modeled membrane is represented
by a triangular mesh which incorporates shear inplane energy,
bending energy, and area and volume conservation constraints.
The macroscopic membrane elastic properties are imposed
through semi-analytic theory, and are matched with those
obtained in optical tweezers stretching experiments. Rheological
measurements characterized by time-dependent complex mod-
ulus are extracted from the membrane thermal fluctuations,
and compared with those obtained from the optical magnetic
twisting cytometry results. The results allow us to define a
meaningful characteristic time of the membrane. The dynamics
of RBCs observed in shear flow suggests that a purely elastic
model for the RBC membrane is not appropriate, and therefore
a viscoelastic model is required. The set of proposed analyses
and numerical tests can be used as a complete model testbed
in order to calibrate the modeled viscoelastic membranes to
accurately represent RBCs in health and disease.

I. INTRODUCTION

Recent developments in sophisticated experimental tech-

niques and instruments allow precise measurements of me-

chanical, rheological and dynamical properties of single

cells. Examples are micropipette aspiration of a cell [1], cell

deformation by optical tweezers [2], [3], optical magnetic

twisting cytometry [4], three-dimensional measurement of

cell membrane thermal fluctuations [5], and cells in shear

flow [6]. These detailed experimental measurements provide

a great potential for realistic numerical simulations of single

cells and their suspensions (e.g., RBCs in health and dis-

ease, blood flow) by incorporating biologically relevant cell

properties.

Distinct cell structures require a development of different

models, however our focus will be primarily on accurate

coarse-grained modeling of viscoelastic membranes, and in

particular RBCs. The relative simplicity of RBC structure

comprised of a membrane filled with a liquid cytosol of fixed

volume makes it an excellent system for model development.

The healthy RBC membrane has a biconcave shape of a

diameter about 8 µm, and consists of a lipid bilayer with

an attached cytoskeleton formed by spectrin protein network

linked by short actin filaments. RBC can be considered to

be a viscoelastic membrane taking into account the nearly
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viscous lipid bilayer and its area-incompressibility [7], while

the attached elastic spectrin network is mainly responsible

for the membrane integrity. A number of numerical RBC

models have been developed recently [7], [8], [9], [10], [11],

[12] representing a variety of methods. Most of the existing

methods require extensive parameter calibration and focus

on accurate incorporation of mechanical properties, which

may limit their relevance in dynamics (e.g., blood flow).

As an example, none of the models appear to consider the

viscoelastic nature of the RBC membrane which affects RBC

rheology and dynamics [4], [13].

We propose an accurate coarse-grained RBC model which

addresses the issue of viscoelastic membrane modeling as a

complex that includes cell mechanical properties, rheology

and dynamics. Macroscopic membrane mechanical proper-

ties are imposed through a linear analysis avoiding any pa-

rameter calibration. We show how to effectively incorporate

viscosity into the RBC membrane such that the numerical

rheological measurements compare well with those derived

from experiments [4]. In addition, RBC dynamics is verified

against analytical predictions for a viscoelastic ellipsoid in

shear flow [13]. These tests can be used as a complete

test bed in order to incorporate realistic properties into

the modeled viscoelastic membrane, which may accurately

represent RBCs in health and disease and other types of cells

of similar structure.

II. RED BLOOD CELL MODEL

The membrane model structure is defined by a set of

points with Cartesian coordinates {xi}, i ∈ 1...Nv, that are

vertices of a triangulated mesh on the surface. The vertices

are connected by Ns springs, which form Nt triangles. The

free energy of the system is given by

V ({xi}) = Vinplane +Vbending +Varea +Vvolume. (1)

Here, the inplane energy mimics elastic properties of the

underlying RBC spectrin network. The bending energy pro-

vides bending resistance of the lipid bilayer, while the area

constraint enforces its area-incompressibility. The volume

constraint is equivalent to incompressibility of the inner

cytosol.

The inplane free energy term includes the springs energy

as follows

Vinplane = ∑
j∈1...Ns

(

kBT lm(3x2
j −2x3

j)

4p(1− x j)
+

kp

(n−1)ln−1
j

)

, (2)

where l j is the length of the spring j, lm is the maximum

spring extension, x j = l j/lm, kBT is the energy unit, p is the
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persistence length, kp is the spring constant, and n is a power.

The first term in (2) corresponds to the attractive wormlike

chain (WLC) potential, while the second term defines a

repulsive force for n > 0 to be called the power force (POW),

so that we abbreviate this spring model as WLC-POW. Note

that if n = 1 the power force energy should be defined as

−kp log(l j). A non-zero equilibrium spring length is defined

by the balance of these two forces.

The bending energy is defined as

Vbending = ∑
j∈1...Ns

kb [1− cos(θ j −θ0)] , (3)

where kb is the bending constant, θ j is the instantaneous

angle between two adjacent triangles having the common

edge j and θ0 is the spontaneous angle.

The area and volume conservation constraints are

Varea =
ka(A−Atot

0 )2

2Atot
0

+ ∑
j∈1...Nt

kd(A j −A0)
2

2A0

, (4)

Vvolume =
kv(V −V tot

0 )2

2V tot
0

, (5)

where ka, kd and kv are the global area, local area and volume

constraint constants, respectively. The terms A and V are the

total area and volume of RBC, while Atot
0 and V tot

0 are the

desired total area and volume, respectively. Note that the

second term in (4) corresponds to local area dilatation.

The forces exerted on each node are calculated from the

above energies using the following expression

fi = −∂V ({xi})/∂xi, i ∈ 1...Nv. (6)

This membrane model can be applied in many numerical

methods. However, we employ Dissipative Particle Dynamics

(DPD), a mesoscale method, for details see [14], [15].

III. RBC MECHANICS

A number of experiments to probe RBC mechanical

properties were recently performed which include the mi-

cropipette aspiration technique [1] and RBC deformation by

optical tweezers [2], [3]. The experimental shear modulus µ0

is within the range of 2−15 µN/m and the bending modulus

kc is between 1×10−19 and 7×10−19 J, which corresponds

to the range of 23−163 kBT based on the normal body tem-

perature T = 36.6oC. Recent optical tweezers experiments

[3] were quantified with the aid of continuum RBC modeling

using a hyperelastic material model integrated by the finite

element method (FEM). The membrane shear modulus of

µ0 = 8 µN/m yielded the best fit to the experimental data

which corresponds to the Young’s modulus of Y = 3µ0 = 24

µN/m.

A. Linear elastic and bending properties

Given an estimate of real elastic properties our goal is

to specify the model parameters (e.g., spring, bending, area

coefficients) such that the modeled membrane yields same

mechanical properties. Linear analysis of small deformations

is performed for a sheet of springs with regular hexagonal

triangulation. Here, we correct and complete the analysis of

[16]. Thus, the shear modulus µ0 and the area-compression

modulus K are expressed as

µ0 =

√
3kBTx0(3− x0)

16plm(1− x0)3
+

√
3kp(n + 1)

4ln+1
0

, (7)

K = 2µ0 + ka + kd, (8)

where l0 is the spring equilibrium length and x0 = l0/lm. The

above equations allow us to derive the model parameters for

given macroscopic elastic properties. In addition, the bending

coefficient kb and the spontaneous angle θ0 are given by

kb =
2√
3

kc, θ0 = cos−1

(√
3(Nv −2)−5π√
3(Nv −2)−3π

)

, (9)

in relation to the bending rigidity kc of the macroscopic

model of Helfrich [17].

B. DPD units and scaling

The average equilibrium shape of a red blood cell mea-

sured in experiments [18] is biconcave given by the equation

z=±D0

√

1−4(x2+y2)

D2
0

[

a0+a1
x2+y2

D2
0

+a2
(x2+y2)2

D4
0

]

,

(10)

where D0 = 7.82 µm is the cell diameter, a0 = 0.05179025,

a1 = 2.002558, and a2 = −4.491048. The area and volume

of this RBC is equal to 135 µm2 and 94 µm3, respectively.

This shape is used for surface triangulation.

In order to relate DPD and real units we propose the

following scaling. The length scale is based on the relation

of modeled RBC diameter to the real diameter D0 as

rc =
DR

0

DD
0

[m], (11)

where rc is the DPD length scale, and superscripts R and D

denote “real“ and “DPD“ units, respectively. The maximum

spring extension is set to lm = 2.2 ∗ l0, and this choice does

not affect the linear elastic deformation, but it governs the

RBC non-linear response at large deformation. Finally, we

scale the energy units to correspond with Young’s modulus

as follows

(kBT )D=
Y R

Y D

r2
c

m2
(kBT )R=

Y R

Y D

(

DR
0

DD
0

)2

(kBT )R. (12)

Note that for the stretching test we do not need to explicitly

scale mass and time because here we are not interested in

stretching dynamics.

C. RBC stretching test

A number of RBC stretching simulations were performed

in order to validate our results against the experimental

data of RBC deformation by optical tweezers [3]. The

total stretching force lies in the range 0...200 pN, and is

applied to 2% of vertices with the smallest x-coordinates

in the negative x-direction and to 2% of vertices with the

largest x-coordinates in the positive x-direction. The vertex
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fraction of 2% corresponds to a contact diameter of the

attached silica bead dc = 2 µm used in experiments. Figure

1 presents RBC stretching response for different number

of vertices Nv. An excellent agreement of the simulation
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Fig. 1. Computational results for different Nv compared with the experiment
[3] and coarse-grained RBC model (solid line) in [12]. DA and DT are axial
and transverse RBC diameters, respectively.

results with the experiment is found for different coarse-

graining levels (number of vertices). A small disagreement

in the transverse diameter may result from rotation of the

RBC in y-z plane in experiments (noticed in numerical

simulations) which may lead to underprediction in DT as

the optical shape measurements were performed on a single

observation angle. However, the simulation results remain

within the experimental error bars. The solid line in figure 1

corresponds to the coarse-grained RBC model [12], however

the estimation of linear elastic properties lacks a contribution

of the area constraints, which results in Young’s modulus

underprediction of about 50%.

Despite the demonstrated success of the RBC model, it has

several problems due to not having a stress-free membrane.

The stretching deformation in different directions may give

a distinct response, which worsens with more irregular trian-

gulation compared with a plane hexagonal mesh. This makes

the result dependent on triangulation quality. In addition, a

slightly irregular mesh may require the bending rigidity to be

set too high compared with the real one in order to maintain

the equilibrium biconcave shape. Here, imposition of the real

bending rigidity may result in relaxation to the stomatocyte

(cup) shape, which is clearly an artifact of the model.

D. Stress-free membrane

In order to eliminate the aforementioned membrane stress

artifacts we propose a simple modification to the described

model. For each spring we define its equilibrium length li
0

i = 1...Ns which is obtained from the triangulation of the

RBC equilibrium shape (10). Equation (7) is used to calculate

the spring parameters p and kp for the given shear modulus

µ0 based on the average spring length l̄0 =
(

∑i=1...Ns
li
0

)

/Ns.

Then, the persistence length p is kept constant for all springs,

while the coefficient kp is recalculated for every spring

(define a set of ki
p i = 1...Ns) based on the force balance

fW LC = fPOW and the equilibrium spring length li
0. This sets

the predefined equilibrium length to li
0 for every spring and

appears to accurately impose the specified shear modulus µ0.

Figure 2 presents simulation results for a range of the

number of vertices Nv from 100 to 27344. We find excellent
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Fig. 2. Stress-free RBC model for different number of vertices compared
with the experiment [3].

agreement of the numerical results with the experiment. Note

that the stress-free model gives an identical stretching re-

sponse when deformed along different directions. In addition,

the deformation response is independent of triangulation.

Here, Nv = 27344 corresponds to a spectrin-level of RBC

modeling, while Nv = 100− 500 is highly coarse-grained

RBC. We suggest that the minimum Nv to be used for the

RBC model should be about 250− 300 because a lower

number of vertices may not provide a smooth RBC shape

representation which could affect dynamics.

IV. RBC RHEOLOGY

Rheological measurements of the time-dependent complex

modulus G∗ were performed in experiments using optical

magnetic twisting cytometry [4] showing the RBC mem-

brane to be viscoelastic. In order to incorporate viscosity

in the membrane model we introduce viscoelastic springs

with a viscous contribution of ξ ∆v, where ξ is the friction

coefficient, and ∆v = v1 −v2 is the velocity difference of the

two ends. The modeled RBC is attached to the surface, and

the mean square displacement (MSD) < ∆r2(t) > of several

points on its top is measured. Theoretical developments in

microrheology [19] provide a relation between MSD and G∗

as follows

G∗
2D(ω) =

kBT

< ∆r2(t∞) > +iω < ∆r2(ω) >
, (13)

where i =
√
−1, and < ∆r2(ω) > is the unilateral Fourier

transform of < ∆r2(t) > − < ∆r2(t∞) >. Figure 3 shows the

storage g′ and the loss g′′ moduli results. Here, the scaling

in vertical axes is performed according to the scaling defined
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Fig. 3. Storage g′ and loss g′′ moduli results compared with the experiment
[4].

above as g′D(kBT )D/r4
c = g′RPa/nm. The scaling in time or

frequency is done according to a characteristic time tc defined

by intersection of g′ and g′′. We showed that the time tc
can be uniquely related to the membrane elastic properties

and total viscous dissipation (fluid and membrane viscosity

contributions), which defines meaningful characteristic time

scale. Note that the scatter at high frequencies is due to data

underresolution at short times.

V. RBC DYNAMICS

While the behavior of fluid membranes in flow is rea-

sonably well studied experimentally, analytically and nu-

merically, the dynamics of viscoelastic membranes is not

well understood. Recent analytical results for viscoelastic

ellipsoids in shear flow [13] suggest that the dynamics

of such membranes is governed by membrane geometry,

elastic properties, the ratio of membrane to fluid viscosity

λ , and flow conditions. This theory applied to red blood

cells suggests that there exists three characteristic regions

of RBC dynamics in shear flow depending on λ and shear

rate: (i) solid-like tumbling motion, (ii) stable tank-treading,

and (iii) intermittent which can be considered as an unstable

behavior combining two previous motions in a sequence.

If λ is smaller than about 2.5 there exists a characteristic

shear rate range (relatively narrow) where the RBC is subject

to intermittent behavior, and for shear rates below that

range the RBC tumbles, and tank-treads for shear rates

above the range. However, if λ is greater than 2.5 (as for

real RBCs in blood plasma) only two regions are defined,

tumbling at low shear rates and intermittent for higher

shear rates. We performed a number of simulations of RBC

dynamics in shear flow in order to compare the results with

the aforementioned analytical predictions. We were able to

qualitatively reproduce RBC dynamics characterized by the

described behavior. In our ongoing work we attempt to make

a connection between the time scale tc and the shear rate in

flow in order to obtain quantitative agreement.

VI. CONCLUSIONS

We presented a general coarse-grained RBC model built

as a network of springs in combination with bending rigid-

ity, area and volume conservation constraints. The model

accurately captures elastic response at small and large de-

formations for different levels of coarse-graining. The RBC

is modeled as viscoelastic membrane which yields accurate

rheological properties and dynamics. This model can be used

for simulations of RBCs in health and disease, and other cells

having a viscoelastic membrane structure.
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