
  

  

Abstract—While it is firmly established that the mechanical 
behavior of most biological tissues, including bioengineered 
tissues, is governed by an underlying network of protein fibers, 
it is still not clear how best to obtain and utilize structural 
information to predict mechanical response. In this paper, 
methods are presented to (1) quantify the fiber arrangement in 
a tissue from different imaging tools, (2) incorporate that 
structure into a multiscale model, and (3) solve the model 
equations to predict both the microscopic and the macroscopic 
tissue response. In principle these concepts could be applied to 
any tissue (incorporating the specific tissue components as 
needed), but for demonstration purposes, the focus of the 
current work is on cell-compacted collagen gel, a model 
engineered tissue. 

I. INTRODUCTION 
ERY much work has been done on the mechanical 
behavior of soft tissues (summarized in [1]), with 

tremendous advances being made in our understanding of 
the role of composition and structure in determining the 
macroscopic properties. Structure, in particular, is 
commonly handled by methods drawn from the theory of 
composite materials [2],[3], particularly by invariant-based 
methods [4] or by methods that integrate over a distribution 
of fibers. Neither approach, however, accounts directly for 
fiber-fiber interactions and the resulting non-affinity of the 
fiber motion. To account for fiber-fiber interactions, a small 
network of fibers can be analyzed in place of a macroscopic 
constitutive law, bridging the scale between the fiber 
network and the tissue via averaging methods [5],[6].  

In using such an approach, one must overcome three 
challenges. First, one must acquire structural information 
about the tissue – that is, a structural model, regardless of 
how it is effected mathematically, can be no more accurate 
than the structural information provided to it. Second, one 
must translate that information into the specification of the 
model. This may be simple or difficult depending on the 
format of the model. Third, one must solved the model 
equations. In the sections below, we describe each step as 
implemented for our multiscale structural modeling scheme.  
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II. METHODS 

A. Structural Characterization of Bioengineered Tissues 
A major technique for the characterization of collagenous  

tissues in particular is polarimetric fiber alignment imaging 
(PFAI), in which polarized light is passed through the tissue 
and then through a second polarizer rotating during the 
experiment [7]. The resulting images are processed to 
determine an equivalent optical element, which provides 
pixelwise measurement of the retardation and extinction 
angle for the tissue. In collagen gels, the extinction angle is 
the direction of primary fiber orientation, and the retardation 
is related to the degree of alignment. Thus, PFAI allows 
direct assessment of the alignment state of the tissue sample.  

One challenge with PFAI is that it only provides 
information about alignment in the plane of the tissue. For 
alignment in the transverse direction, another method is 
necessary. We use scanning electron microscopy to visualize 
the fibers in the tissue, subsequently analyzing the SEM 
image via a Fourier-transform method [8] to determine an 
approximate fiber orientation distribution. Briefly, if one 
moves along a fiber, the image intensity changes slowly, 
giving a low-frequency response, whereas if one moves 
across fibers, the image intensity changes quickly, giving a 
high-frequency response. Once the distribution has been 
generated, the appropriate structural parameters are easily 
extracted.  

B. Construction of Simulated Fiber Networks 
In our multiscale scheme, a different fiber network is used 

at each Gauss point in the finite-element representation of 
the tissue. Fiber networks are generated by a seed-and-grow 
technique [9]. Seed points are selected randomly throughout 
a cubic domain, and a growth direction is selected randomly 
for each seed. A fiber is then extended from each seed in 
both directions and continues extending until it intersects 
another fiber or the edge of the domain. Finally, the domain 
is truncated to eliminate edge/corner effects [10]. 

Anisotropy in the fiber network is generated by drawing 
the fiber growth directions from a non-uniform distribution. 
Since fibers are of different lengths, and thus contribute 
unequally to the overall network alignment (which 
corresponds to what is measured by PLAI), it cannot be 
certain a priori that a given distribution of growth directions 
will produce the desired final network state. The process was 
therefore iterated for each network until the extinction 
direction from the PLAI and the principle alignment 
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direction from the model were within 8° of each other (dot 
product greater than 0.99) and the degree of alignment 
(measured as the eigenvalue of the second-rank orientation 
tensor for the model network vs. the scaled magnitude of the 
retardation from PLAI) was within 6%. We have found that 
statistical homogeneity is achieved for networks containing 
at least 300 fibers.  

C. Model Implementation 
The model is implemented by a macroscopic finite-

element method coupled to a microscopic network 
mechanics calculation, as described in detail elsewhere [6]. 
Briefly, the method relies on the concept of the volume-
averaged stress, 
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Sij =
1
Vω

sijdV
ω

∫ , (1) 

 
where S is the average stress, s is the local stress, and V is 
the volume of the averaging domain ω . It has been shown 
[5] that for a materially-deforming averaging volume, the 
condition of microscopic mechanical equilibrium, 
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sij,i = 0, (2) 
 
implies the following macroscopic balance: 
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∫  (3) 

 
where δω  is the boundary of ω  with unit outward-directed 
normal n, u is the displacement of the tissue, and index 
notation is used in both (2) and (3). The extra term, which 
arises from correlations between the displacement field and 
the stress field, vanishes if the averaging volume is fixed but 
not when the averaging volume is deformed. 
 The macroscopic system (3) is solved as follows. First, an 
initial guess of the nodal displacements is made. Second, the 
displacement field is determined in a very small region 
around each Gauss point and used to specify the boundary 
deformations of a microscopic network problem. The 
network mechanics problem is solved by requiring no net 
force on any interior node (i.e., fiber-fiber intersection). 
Once the network problem has been solved, the integrals in 
(1) and (3) are evaluated and passed up to the macroscopic 
scale. If the weak form of (3) is satisfied, then the problem is 
done. If not, a Newton iteration is taken for the macroscopic 
nodal position, and the process repeats. 

 

D. Test Problem: Compacted Collagen Cruciform 
The method is generally applicable, but a test problem is 

obviously necessary. We use the compacted, cell-populated 
collagen cruciform, which has non-uniform fiber orientation 
(fibers tend to align along the arms, for example), shows 

interesting mechanical behavior, and is amenable to biaxial 
testing with concurrent PLAI. 

Samples were prepared using human dermal fibroblasts (
cells/ml) and acid-solubilized type I collagen 

(Organogenesis, 1.5 mg/ml). The cruciforms had two wide 
arms (8 mm) and two narrow arms (4 mm), leading to 
asymmetric alignment. Gels were cultured for four days, 
which is long enough to produce significant compaction and 
realignment of the collagen network but short enough that 
chemical effects (e.g., synthesis and degradation) are 
negligible.  

III. RESULTS 

A. Structural Characterization and Network Generation 
Figure 1 shows representative PLAI and SEM-based 

orientation data images, which were used to construct 
networks such as that shown in Figure 1d. 

 

 
 
Fig. 1. (a) Scanning electron micrograph of a transverse slice of a 
compacted collagen network.  (b) PLAI image of one quarter of cruciform, 
with red vectors showing measured fiber orientation and white vectors 
showing model representation.  (c) Fiber alignment as calculated via the 
Fourier transform method applied to image (a).  (d) Typical model network.  
This network is strongly aligned with the y axis. 

B. Mechanical Testing 
Two mechanical tests were performed. First, strip biaxial 

(off-axis hold) tests were performed, in which the sample 
was extended vertically and held at constant length 
horizontally. The experiment was simulated using the model, 
and two constants for the fiber mechanical model were 
regressed. The resulting fit for the fiber force was  
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Ff = 14nN( ) exp 3.8ε( ) −1[ ]  (4) 
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where ε is the fiber strain. These two parameters were then 
used to model an equibiaxial extension experiment 
(simultaneous stretch in both directions). As can be seen in 
Figure 2, the model based on the strip biaxial test predicted 
the equibiaxial test results very well. 
  

 
Fig. 2. Mechanical tests of cruciforms. On the left, a strip biaxial test is 
shown.  Since the vertical direction is being extended, the vertical-direction 
forces are higher than the horizontal.  Model fit is shown by the red lines, as 
described in the text.  On the right, an equibiaxial test is shown.  In this 
case, the wider horizontal arms generate larger forces. Importantly, the 
model (red lines), which used parameters entirely determined by the first 
test, predicted the second test results well. 

IV. DISCUSSION 
The image-based multiscale scheme was extremely 

successful in analyzing and predicting behavior of the four-
day compacted collagen gel. The rearrangement of fibers 
during loading and the mechanical consequences thereof 
were predicted accurately for one test based on results from 
another. The method, although requiring multiple steps and 
considerable computational resources, is quite promising. 

There remain, however, significant issues to address. 
Most importantly, there was only one component – collagen 
– in the gel, and the cells were quite dilute and thus not 
expected to contribute a large amount to the mechanical 
properties of the gel. In a real tissue, be it native or 
engineered, there is a high degree of cellularity, as well as a 
wide range of other structural proteins besides collagen (e.g., 
fibrin or elastin) and proteoglycan. In principle, our 
multiscale scheme should be well positioned to address the 
mechanical roles of the different components, but 
implementation of such a detailed model will be far from 
trivial. The challenge will be particularly great because the 
hierarchical nature of many tissue architectures may require 
additional levels beyond the simple two-scale model 
presented herein.  
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