
  

  

Abstract — Standard analysis methods for atomic force 
microscope (AFM) indentation experiments use Hertzian 
contact mechanics to extract local elastic properties assuming a 
homogeneous sample material. In contrast, most biological 
materials have heterogeneous structure and composition. We 
previously introduced a non-Hertzian analysis method to detect 
depth-dependent elastic properties from indentation depth, 
force and geometry information. In this study we employ a 
modified Eshelby model to characterize the elastic properties of 
heterogeneous substrates with discrete embedded inclusions. In 
this hybrid computational model, we estimate the contribution 
of inclusions with known size and moduli to the overall 
indentation response of a heterogeneous substrate based on the 
effective volume fraction of constituents within the indentation 
field. For wide ranges of indenter size and inclusion geometry, 
simulations reveal a consistent ellipsoidal indentation field, 
suggesting the Eshelby model may be applicable for large 
discrete inclusions. This novel technique provides a potential 
means to calculate inclusion properties of heterogeneous 
materials, such as cells and tissues, using AFM indentation 
without physical deconstruction of the composite sample. 

I. INTRODUCTION 
ULTISCALE modeling of complex biomechanical 
systems requires accurate knowledge of microscopic 

elastic properties of the key constituents. Most microscale 
mechanical measurement techniques operate under 
simplifying assumptions such as isotropic linear elasticity, 
and homogeneity of the sample. In contrast, cells and tissues 
have complex mechanical properties often coupled with 
heterogeneities in structure and composition. Such 
heterogeneity plays a critical role in determining how 
physical forces are transferred to the mechanosensitive 
protein machinery within the cell [1]. Intuitively, different 
components of an inhomogeneous material are expected to 
respond differently under mechanical loading; thus, internal 
organelles and other cytoskeletal and extracellular 
components can have a significant effect on the distribution 
of mechanical stress. 

A common goal of biomechanical studies is to gain 
insight into the structural workings of the tissue of interest 
such that the importance of individual components and their 
biological or biophysical roles in health and disease can be 
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realized [2]. Computational modeling of tissue properties is 
critical to understand such mechanobiological relationships. 
For example, by histologically deconstructing the underlying 
laminar architecture of the myocardium and mathematically 
transforming local kinematic measures using a 
microstructural basis, new insights into the mechanism of 
ventricular contraction have been obtained [3, 4]. 
Phenomenological material models, on the other hand, 
operate on a different premise. While they may succeed in 
mimicking the mechanical behavior of tissue under 
deformation -- such as biaxial properties of the aortic wall 
[5] -- they are not intended to elucidate the underlying 
biophysical relationships. Herein, we introduce a hybrid 
method that involves both structural modeling using finite 
element analysis and phenomenological modeling based on 
elastic homogenization theory, with the objective of 
enhancing AFM indentation testing as a reliable means to 
characterize multi-component biological substrates for 
multiscale biomechanics applications. 

II. MATERIALS AND METHODS 

A. Theory 
Eshelby’s homogenization theory estimates the 

equilibrium effective elastic properties of heterogeneous 
materials with sparse, uniformly distributed spherical 
inclusions, given the volume fraction of the constituents [6].  
Recent studies have successfully extended its applicability to 
higher volume ratios [7]. Accordingly, the effective elastic 
constants, K and µ, for a given heterogeneous material with 
known substrate (M) and inclusion (Ω) properties can be 
determined using the following equations:  
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where fΩ is the volume ratio of the inclusion, and s1 and s2 
are components of the Eshelby tensor for an inclusion 
geometry of circular cross-section [7]. 

When the results of this modified Eshelby homogenization 
routine were compared to those reported by others in the 
literature [8], excellent agreement between the two models 
was observed (data not shown). 
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B. Finite Element Modeling 
To test the applicability of analytical homogenization to 

AFM indentation experiments, computational studies were 
performed in which the indentation response was computed 
for idealized inhomogeneities introduced into an isotropic 
elastic substrate. 

A finite element model (FEM) simulation of AFM 
indentation was developed in ABAQUS Standard (v6.7; 
Simulia, Providence, RI) similar to our previously reported 
approach [9]. A thick, isotropic, linear elastic cylindrical 
substrate of 50-µm height and 50-µm radius was bound at its 
bottom axial (z-plane) surface with frictionless constraints 
allowing radial expansion. A large substrate indentation 
depth of 3 µm was selected to mimic testing of larger tissue 
samples to be investigated in later stages of this work. For 
some of the heterogeneity conditions, Abaqus Explicit was 
used since it reached convergence at greater indentation 
depths compared to Abaqus Standard. 

The substrate was meshed with 10,000 structured 4-node 
linear continuum axisymmetric elements with reduced 
integration (CAX4R). A meshing bias of 10X toward the top 
center of the mesh was introduced in both radial and axial 
directions to accommodate kinematic nonlinearities in the 
immediate vicinity of the indentation site. In addition, 
arbitrary Lagrangian-Eulerian mesh adaptivity was 
employed for smaller indenter geometries at a frequency 
ranging from 1-20 increments with 2-10 remeshing sweeps, 
iteratively applied to avoid excessive distortion of the mesh 
under large local deformations. 

The indenter was modeled as an analytical rigid spherical 
surface coming into hard (direct) surface-to-surface contact 
with the substrate, with maximum contact clearance of 0.2 
µm. A no-slip friction condition was enforced at the 
interface, although frictionless and low-friction indentations 
were also tested for homogeneous substrate conditions in 
order to evaluate associated effects on the results. Even 
though it was theoretically redundant, the indenter had to be 
further constrained along the indentation axis against 
moments; failure to provide this constraint caused clearly 
inaccurate deformations. The simulation started with the 
indenter at a resting position on the substrate surface (radial, 
axial = 0, 0), and a 3-µm axial displacement (indentation) 
was prescribed as a time-independent (static, general) step 
with a minimum of 20 increments.  

Simulations were performed on a 2.0 GHz Intel Core Duo 
processor personal computer (Apple Computer, Cupertino, 
CA) with 2 GB of memory (at least 512 MB reserved for 
operation), and they typically ran for 60 seconds with values 
ranging from 15 to 330 seconds depending on the indenter 
size, substrate heterogeneity and adaptivity settings. Three 
different material heterogeneity conditions were tested as 
well as four different spherical indenter sizes. The 
heterogeneity conditions were either a horizontal 3-µm thick 
layer, a vertical 3-µm radius column, or an embedded 2-µm 
diameter sphere, respectively named layer, column and zone 
conditions. These conditions were chosen as simplified cases 
to gain an understanding of the complexities of testing 
composite materials, and not to represent particular 
biological samples. The indenters were 5 µm (zone only), 10 

µm (layer, column, zone), 15 µm (layer, column) and 25 µm 
(layer, column) diameter spheres representing a range 
commonly used in AFM nanoindentation studies. Even 
though only linear elastic materials were tested, a variety of 
stiffness combinations yielded a wide range of indentation 
responses. For the layer and column conditions, inclusions 
that were stiffer than the surrounding matrix were employed 
whereas for the spherical zone condition, both soft and stiff 
inclusions were tested. It should also be noted that the zone 
condition used an advancing-front algorithm with quad-
dominated free elements to mesh the sample due to 
inapplicability of structured elements with the round shape 
of the inclusion.  

After a simulation was completed, the net reaction force 
on the indenter, FFEM, and the indentation depth, h, were 
extracted at each incremental load step for post-processing. 
The pointwise apparent elastic modulus, 
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ˆ E pw , was then 
computed according to: 
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where R is the indenter radius [9].  
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can easily be related 

to the Young’s modulus, EY, of an equivalent elastic 
substrate via: 
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where ν is Poisson’s ratio, with µeff and Keff defined above.  
Material incompressibility (ν = 0.5) was assumed for all 
simulations in this study. 

C. Hybrid Modeling 
Results from the finite element analysis using Equation (3) 

were combined with the modified homogenization theory 
using Equations (1) and (2) and the known material 
properties of the inclusion and substrate. This process led to 
a theoretical estimate of the corresponding volumetric 
contributions of the inclusion and the surrounding substrate 
to the overall effective apparent modulus as a function of 
indentation depth. 

III. RESULTS AND DISCUSSION 

A. Depth-Dependent Pointwise Modulus 
All FEM simulated heterogeneity conditions produced 

non-linear depth-dependent changes in pointwise apparent 
modulus. Both the layer and column scenarios produced 
logarithmically decaying effective moduli (Figure 1A), 
whereas the spherical zone inclusion problem resulted in a 
slight initial increase followed by a logarithmic decay 
(Figure 2). These results suggested that the stiffening effect 
of inclusions -- regardless of their geometric shape and 
position -- was reduced as the field of indentation grew with 
the increasing indentation depth. Under the zone condition, 
due to the large indentation field, no significant increase in 
effective modulus was observed at depths greater than 2 µm. 
Friction had little effect to the overall indentation response. 
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The resultant modulus essentially represented the effective 
apparent modulus of the composite, which was used with 
Eshelby’s homogenization theory to back-calculate the 
equivalent volume ratio of the inclusion knowing the 
prescribed inclusion and matrix moduli. Accordingly, the 
computed family of volume ratio curves for the 
representative layer case in Figure 1A, with 1 kPa bulk 
material and a range of inclusion moduli, is shown in Figure 
1B. Similar results were found for the column and zone 
cases, indicating that the relative size of the inclusion 
diminishes as the indentation depth increases due to the 
expanding indentation field. 

B. Universal Indentation Field 
Noting the similarity in the resultant volumetric ratio 

curves, despite the 20-fold range of inclusion moduli, it was 
hypothesized that a universal mathematical relationship 
might govern the indentation field, insensitive to the elastic 
properties of the heterogeneities for the three configurations 
tested in this study. To test 
this hypothesis an ellipsoid 
geometry was fitted by least-
squares minimization to the 
combined layer and column 
cases, such that the relative 
volume of the inclusion within 
the indentation field matched 
the theoretical volume ratio 
under both scenarios; this 
concept is visually 
represented in Figure 3 for 
the layer condition. The 
fitting procedure revealed that 
the axial extent of the 
indentation field was 
approximately 5.3 times the 
depth of indentation. This value was close to the empirical 
zero-stress border (values less than 5% of the maximum 
compressive stress) observed in FEM simulations of uniform 
homogeneous substrates, which occurred at 4.7 times the 
indentation depth. Same border for the zone condition 
occurred at around 4.1 times the depth. As a consequence of 
this large indentation field, it became prohibitively difficult 
to detect deep inclusions of finite size as demonstrated by 
the diminishing effect of the inclusion illustrated in Figure 
2. In addition, small inclusions relative to the indentation 
field were difficult to detect irrespective of the inclusion 
modulus (data not shown). 

C. Limitations 
The method developed herein currently applies to 

heterogeneous substrates made up of isotropic linear elastic 
materials only. However, it can be extended to nonlinear or 
anisotropic materials by adjusting the components of the 
Eshelby tensor in Equations (1) and (2). Since the current 
finite element analysis was carried out on an axisymmetric 
domain, the results would apply only to symmetrical 
problems. Future studies will focus on developing more 
realistic 3-D simulations with non-collinear heterogeneities. 

IV. CONCLUSION 
 This proof-of-concept modeling study demonstrates how 

the effective homogenized material properties obtained from 
AFM indentation experiments can be computationally 
deconstructed to obtain knowledge of inclusion geometry 
and/or material properties. The simulations revealed an 
ellipsoidal indentation field that extends approximately 4X 
to 5X of the indentation depth. Accordingly, finite sized 
heterogeneities that are located deeper than a small 

 
Figure 1. (A) Depth-dependent pointwise apparent modulus from 
representative column condition using 25-µm indenter with inclusions 
ranging from 1 to 20 kPa in a bulk material of 1 kPa. (B) The associated 
family of curves for the calculated inclusion volume ratio according to 
Eshelby homogenization theory (solved with Abaqus Standard). 

Figure 3. Axisymmetric view 
of hypothesized universal 
ellipsoidal indentation field 
(red curve) that occupies both 
the substrate (green) and the 
inclusion (blue).  

 
Figure 2. Effect of inclusion location on the effective elastic modulus 
for the zone condition in which the depth of the 2 µm spherical 
inclusion is shifted.  Legend indicates distance between substrate 
surface and top of inclusion; “None” refers to the homogeneous case 
with no inclusion (solved with Abaqus Explicit). 
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proportion of the indenter radius would not be expected to 
significantly alter the force-depth response in AFM 
experiments. We have observed that the size of the inclusion 
relative to the indentation field was more critical than its 
modulus for deconstruction of material properties. 

 These findings may assist in the rational design of AFM 
experiments in which parameters such as indenter diameter, 
maximum indentation depth, or spacing between 
indentations can be optimized for a given heterogeneous 
sample.  The hybrid computational approach employed in 
this study is designed to be generally applicable to 
heterogeneous substrate systems including biological cells 
and tissues with measurable inclusion sizes (e.g. the cell 
nucleus), such that knowing the size and geometry of the 
inclusions, one can back-calculate the inclusion and 
substrate moduli without the need for physical or chemical 
dissociation of the constituents. Characterization of depth-
dependent effects of subsurface heterogeneities can yield an 
improved understanding of material nonlinearities observed 
in a number of biological samples. In future studies, the 
depth-dependent pointwise apparent modulus will be 
combined with finite element models in an inverse fitting 
procedure to extract constituent material properties from 
AFM indentation experiments on such heterogeneous 
samples, starting with composite hydrogel phantoms 
designed specifically for model validation.  
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