
 

Abstract – Management of intracranial pressure (ICP) 
following a traumatic brain injury (TBI) is an essential aspect 
of minimizing such secondary brain injuries as intracranial 
hypertension and cerebral hypoxia. Currently, ICU 
management of ICP elevations is reactive in nature; we propose 
a quantitative method to predict potentially harmful elevations 
in ICP. 

Methods - Continuous intracranial pressure measurements 
were obtained from 37 patients at the UCLA Medical Center. 
Intracranial hypertension (IH) episodes were identified along 
with slow wave segments (used for control sets). Four, five 
minute segments were then constructed from the IH episode: 
one from the onset of ICP elevation (pre-IH #0) along with sets 
5, 20, and 35 minutes prior to the elevation (pre-IH #5, #20, #35 
respectively). Quantification and recognition of the three ICP 
sub peaks was performed using our group’s algorithm termed 
Morphological Clustering and Analysis of Intracranial Pressure 
(MOCAIP). Furthermore, a quadratic classifier (QDC) was 
used to determine the metrics with the greatest predictive 
power. These metrics were then used to compare the control 
data set to the data sets described previously.  

Results – From the ten most frequently selected metrics each 
of the four pre- intracranial hypertension (pre-IH) segments 
were compared with the control. Sensitivity (SEN), specificity 
(SPE), and accuracy (AC) were determined for each set with a 
SEN and SPE for the data set five minutes prior to ICP 
elevation of 90% and 75% respectively.  

Conclusion - Combining the MOCAIP analysis, QDC 
classification, and bootstrap method of statistical sampling, our 
analysis has the potential to predict an ICP elevation event 20 
minutes prior to the event onset. 

I. INTRODUCTION

early 1.5 million cases of traumatic brain injury (TBI) 
are reported annually in the United States. Management 

of intracranial pressure (ICP) is a key component in 
minimizing secondary brain injury; intracranial hypertension 
may result in brain herniation, cerebral hypoxia, and cerebral 
ischemia [1]-[3]. The contents of the skull, tissue, 
cerebrospinal fluid (CSF), and blood are maintained at a 
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constant volume within the rigid bone case enclosing the 
brain. In general, ICP is the sum of the pressures exerted 
within the system, including the cranium and the vertebral 
column [3]. 
 First described by Lundberg et al. in 1965, the ICP 
waveform may be broken down into the following 
categories: A, B, and C waves. “A” or “plateau” waves are 
defined by an abrupt increase in ICP to peaks of 50-80 
mmHg for the duration of greater than five minutes. These 
ICP plateau waves are generally considered ischemic 
pathological events that can be associated with secondary 
brain injury. Moreover, semi-periodic increases in ICP 
defined as “B” waves have an elevation of 20-30 mmHg. 
These “B” waves need to be accurately differentiated from 
the malignant plateau waves as ‘over-treatment’ may result. 
Lundberg also described a “C” wave that occurs with 
maximum amplitude of 20 mmHg and a frequency of 4-8 
per minute [4].  

 Clinically, ICP management has experienced a delayed 
maturation over the past 40 years. The fundamentals of the 
ICP pulse waveform have been known for decades; 
however, precise quantitative relationships and physiological 
explanations are still predominantly based on assumptions 
and not sound scientific proof. We propose a method to 
differentiate pathological ICP elevations (plateau waves) 
from potentially benign elevations. Identification and 
intervention of the pathological ICP elevations at the 
moment of onset, or ideally prior to the event, may improve.  

II. METHODS
Patient Data 

During monitoring at UCLA Medical Center, continuous 
intracranial pressure measurements were obtained from 37 
patients admitted for the following reasons: 

1. Diagnostic evaluation for possible normal pressure 
hydrocephalus 

2. Headache evaluation in patients with suspected 
idiopathic intracranial hypertension or shunt 
malfunction 

3. Management of adult slit ventricle syndrome 

All measurements and procedures were approved by the 
UCLA Medical Center Institutional Review Board (IRB) 
committee. 
 Intracranial hypertension episodes defined as an elevated 
ICP of greater than 20 mmHg for longer than five minutes 
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were manually identified by an experienced observer.  
Furthermore, slow waves or B waves were also manually 
segmented. From the 125 slow wave segments, 63 samples 
were selected at random for use as controls.  

MOCAIP Algorithm
 A detailed description of the MOCAIP algorithm may be 
found in previous publications [5]. In general, the MOCAIP 
algorithm is comprised of five signal processing blocks:
Pulse Detection, Pulse Clustering, Legitimate Pulse 
Recognition, Peak Detection, and Peak Designation. The 
MOCAIP algorithm also utilizes a reference library of 
legitimate ICP pulses.  

A. Pulse Detection    
Pulse detection in the MOCAIP algorithm is utilized by 

using conventional ECG QRS detection with adaptive 
interval constraints as proposed in [6]. 

B. Pulse Clustering 
A clustering algorithm is then used to group individual 

pulses based on the Euclidian distance for a short segment of 
signals. The average pulse of the largest cluster is then 
retained for further analysis, which is termed as the 
dominant pulse. The length of the ICP segment used for each 
pulse was one minute.   

C. Legitimate Pulse Recognition 
Raw ICP pulse waves are particularly sensitive to transient 

disturbances such as coughing or patient movement; the 
averaging reduces noise and effectively isolates the 
representative pulse for a given segment. Possibly, a given 
one-minute segment could contain only noise; therefore, the 
dominant pulse would render useless. Using the legitimate 
pulse library such illegitimate dominant pulses are removed.  

D. Peak Detection & Peak Designation 
 Normally, the ICP pulse waveform contains three 
characteristic peaks, each having a physiological source [1]. 
Through peak detection, each legitimate dominant pulse is 
analyzed and a set of 24 MOCAIP metrics are generated for 
each dominant pulse (Table 1). Finally, the peak designation 
process is executed to optimally designate the three well 
established ICP peaks for each legitimate dominant pulse. 
More detailed descriptions of this algorithm may be found in 
previous publications [5].  

Determination of Sensitivity and Specificity of the Identified 
Precursors of ICP Elevation   

Using a two-step classification experiment and 
conventional measures of sensitivity (SEN) and specificity 
(SPE), we test our current hypothesis: that ICP waveform 
morphology is fundamentally different and can be 
quantitatively differentiated between an Intracranial 
Hypertension segment (termed pre-IH segment) and a 
normal ICP waveform (termed normal segment). 

Table. 1.  Illustration of ICP related metrics that can be extracted by the 
current MOCAIP algorithm.

Step 1: Determination of the Predictive power of each 
MOCAIP metrics. 

 We previously defined 24 MOCAIP metrics (Table 1), of 
which any combination may be used as the feature vector 
input to our simple quadratic classifier (QDC) with the 
exception of mean and diastolic ICP along with onset 
latency (Lt). The exclusion of mean and diastolic ICP were 
deemed necessary to further challenge the identification of 
elevated ICP. In general the QDC uses the feature vector of 
n MOCAIP metrics and outputs a decision of either positive 
or negative for the given case. Due to the large amount of 
possible MOCAIP metrics combinations, any could be used 
in the feature vector. An efficient global random search 
strategy called Particle Swarm Optimization (PSO) was 
implemented to improve the chance of locating the optimal 
combination of metrics. More specifically, the process of 
finding the optimal combination of metrics was executed as 
follows:  

1. Using the manually tagged starting position of the ICP 
elevation four datasets of five minutes were built. The 
datasets correspond to different time locations during and 
prior to the ICP elevation event. Dataset #0 contains a 
five minute segment directly following ICP elevation. 
Datasets #5, #20, and #35 include five minute segments 
5, 20, and 35 minutes prior to ICP elevation respectively 
(Fig. 1). 

2. Using the 125 representative slow wave episodes along 
with the 63 randomly selected baseline segments a 
control dataset was constructed. 

MOCAIP Metric Group Metrics 

Amplitude
Absolute mICP, dP1, dP2, dP3, diasICP 

Ratio dP2/ dP1(dP12), dP3/ dP1(dP13), dP3/ dP2(dP23)
Time 

Interval 
Absolute LT, L1, L2, L3
Relative L2 - L1(L12), L3 - L1(L13), L3 - L2(L23)

Pulse 
Curvature 

Absolute Curv1, Curv2, Curv3, Curvm

Ratio Curv2/ Curv1(Curv12), Curv3/ Curv1(Curv13),  Curv3/
Curv2(Curv23)

Slope (P1- diasICP)/ L1 (k1)
Decay time constant Lx where dPx = 0.37 dP3
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3. For the control data set along with one of the four pre-IH 
datasets the following procedures were performed: 
a. Data from both the control and pre IH data set were 

combined. Each segment was identified as negative or 
positive respectively. 

b. The following bootstrap procedures were run for 200 
independent repetitions. 
i. A training set was built by randomly sampling the 

positive and negative cases while maintaining the 
initial distribution. 

ii. The PSO algorithm was applied and the optimal 
MOCAIP metric combination was calculated and 
saved. It is important to note that this combination 
differed for each repetition. 

4.Based on the frequency of selection, the optimal 
MOCAIP metrics are saved.   

Fig. 1.  Illustration of constructing pre-intracranial hypertension segments 
at different time intervals relative to the start of ICP elevation for an episode 
of ICP plateau wave. 

Step 2: Estimation of the sensitivity and specificity of using 
top MOCAIP metrics to classify normal control ICP 
waveforms from those associated with ICP elevation.  

Through the same bootstrapping method described above 
the SEN and SPE were estimated. In general, the 
bootstrapping method estimates given properties from an 
approximate distribution. The method randomly samples the 
population and then estimates the properties from the given 
distribution. Unbiased estimates of SEN and SPE are 
calculated for each repetition. Again the following 
procedures were performed for both the control data set 
along with each of the pre IH datasets. 
1. Records were combined into mixed data set. 
2. Control segments and pre-IH segments were identified 

as negative and positive respectively. 
3. The following steps were independently repeated 200 

times 
a. A training set was built by randomly sampling (with 

repetition) the positive and negative cases while 
maintaining their empirical distribution. 

b. Based on the training set, a QDC was calculated 
based on the ten MOCAIP metrics of highest 
predictive power. 

c. This classifier was evaluated on both the training set 
and the original dataset with respect to the SEN, 
SEP, and AC. 

        
FNTP

TPSEN
+

=          
FNTP

TNSPE
+

=
         N

TNTPAC += ,

where TP represents the number of true positive cases, TN 
represents the number of true negative cases, and N is the 
total number of cases. 

d. The difference between the pre-IH datasets and the 
original datasets were then calculated. 

iii oSENtSENSEN −=Δ         
oSPEtSPESPE ii −=Δ

oACtACAC ii −=Δ ,

where i represents the current iteration of the 200 bootstrap 
repatriations, t represents the performance metrics from the 
training dataset, o represents those from the original dataset. 

4. A QDC was derived and tested using the original 
dataset. 

5. The final estimate for SEN, SPE, and AC are given 
below: 

iSENSENaSEN Δ−=

iSPESPEaSPE Δ−=
iACACaAC Δ−= ,

         
where iSENΔ  is the average of the iSENΔ  from the 200 
iterations of the bootstrap method. SEN is the sensitivity 
obtained from the previous step that uses the original dataset 
for both building and testing the classifier, and finally aSEN
represents the adjusted sensitivity. 
 In summary, we were able to quantitatively describe the 
predicative power of the MOCAIP metrics for each of the 
four pre-IH segments. 

III. RESULTS
The predictive power of each MOCAIP metric was 

defined by the frequency at which it was chosen. For each of 
the four pre-IH segments, Table 2 lists the MOCAIP metrics 
chosen with the highest frequency. From the 21 total metrics 
considered 14 were chosen at least once; however, the six 
latency related metrics and curvature of the first peak were 
never selected.  

Pre IH Top 10 most predictive MOCAIP metrics 
0 Curv3 dP12 dP13 dP1 Curv12 dP3 Slope dP23 Curvm Lx

5 Curv2 Curv3 Lx dP3 dP12 Curvm dP2 dP23 dP13 dP1

20 Curv2 dP23 Curv3 dP13 Lx dP12 Curv12 dP1 Slope dP2

35 Curv3 Curv2 Curvm Curv13 Curv23 dP23 dP13 dP1 Lx dP12

Table 2. List of top 10 most predictive MOCAIP metrics for differentiating 
pre-intracranial hypertension segments from normal ones. 

Comparison of the variance of a selected MOCAIP metric 
(dP3) relative to the five groups tested (control, pre-IH #0, 
#5, #20, and #35) is shown in Fig. 2. Furthermore, if a given 
metric value was found to be statistically significant between 
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groups it is listed on the subplot. For example, the value of 
dP3 was found to be statistically significant between five 
groups, meaning the control group could differentiated 
significantly from the pre-IH #0 and pre-IH #5 group, and 
the onset (pre IH #0) could be differentiated from the pre-IH 
#5, #20, and #35 group. Interestingly, even though L23 was 
not selected in the top ten metrics for any of the pre-IH 
groups it was shown to be statistically significant in four 
cases (0-5, 0-20, 0-35, and 0-C, box plot not shown). 

Fig. 2.  Box-plot showing the distribution of one MOCAIP metrics (dP3)
among five different groups that include four pre-IH groups and one control 
group.  By a proper multiple-comparison, we can detect, for each metric, the 
pairs of the groups that are statistically (corrected p value <0.05) different. 

  Table 3 summarizes the adjusted performance metrics 
SEN, SPE, and AC for classifying pre-IH segments from the 
control dataset. Differentiating the pre-IH #0 group (onset of 
elevated ICP) not surprisingly showed the best results with a 
SEN of 93%, a SPE of 98%, and an overall AC of 97%. 
Even though these results are promising the overall goal of 
the work is to predict IH episodes before the event. 
Therefore, even though the results from the pre-IH #5 do not 
provide the same values for SEN, SPE, and AC the results 
are still promising, 90%, 75% and 77% respectively. From 
these values we can state that our algorithm could alert staff 
of an impending ICP plateau wave five minutes prior to its 
occurrence with 90% of those cases being a true plateau 
wave. Interestingly, a SPE value of 89% was found for the 
pre-IH #20 group, which is much higher than the 75% 
reported for the data five minutes prior to the event (pre-IH 
#5). With this prior exception, all other performance metrics 
decreased as the time from the elevated ICP event increased.  

Pre-IH Sensitivity Specificity Accuracy 
0 0.93±0.04 0.98±0.01 0.97±0.01 
5 0.90±0.05 0.75±0.03 0.77±0.03 
20 0.77±0.08 0.89±0.02 0.88±0.02 
35 0.76±0.10 0.71±0.02 0.72±0.02 

Table 3.  Adjusted performance metrics from using the top 10 most 
predictive MOCAIP metrics as feature vectors. 

IV. DISCUSSION 

 Combining the MOCAIP analysis, QDC classification, 
and bootstrap method of statistical sampling, our analysis 
has the potential to predict an ICP elevation from 20 minutes 
before its onset; however, future work must be done to fully 

automate the process for clinical use. Furthermore, our 
current analysis does not completely address the 
mechanisms behind spontaneous ICP elevation, currently it 
is a purely data driven process.  

 Based on our control data set, we expect an increase in the 
specificity (SPE) for real-time running of the current 
algorithm. This estimation is based on the disproportionate 
amount of ICP slow waves segments included in the control 
dataset. The increase in ICP slow waves presents a more 
challenging case verses a baseline ICP segment that does not 
contain oscillatory ICP waves. Unfortunately, we do not 
expect an increase in the sensitivity (SEN); however the 
current SEN of 90% should be taken cautiously because of 
the small number of patients within the study and the result 
may be statistically biased due to the multiple contributions 
of ICP elevation segments from the same patient.   

Despite the fact that ICP is rigorously controlled as 
commonly prescribed in brain injury patient management 
protocols, the experience in our neurocritical care unit shows 
that the percentage of time of elevated ICP can be still as 
high as 18%. This observation may be explained by many 
factors, one of which may result from the reactive nature of 
managing ICP. Reactive management of ICP depends on a 
timely capture of episodes of ICP elevation, which could 
potentially be delayed resulting in further delay of 
interventions whose efficacy on controlling ICP may also 
need time to take effect. Consequently, a reliable forecast of 
impending ICP elevation is very desirable to reduce the 
chance of missing ICP elevation and to provide additional 
time for interventions.    

V. CONCLUSION 
The encouraging results we obtained in the present work 

may have significant clinical implications. The current 
reactive management practice for elevated ICP could be 
supplanted by a more proactive one where the moment of 
ICP elevation can be anticipated in a time window adequate 
for clinical interventions.  
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