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Abstract— A new signal processing scheme is presented for
extracting neural control information from the multi-channel
surface electromyographic signal (sEMG). The extracted in-
formation can be used to proportionally control a multi-
degree of freedom (DOF) prosthesis. Four time-domain (TD)
features were extracted from the multi-channel sEMG during
a series of anisotonic, isometric wrist contractions, which
involved simultaneous activations of the three DOF of the
wrist. The forces produced at the three wrist DOFs during
these contractions were also collected using a customized force
sensor. The extracted features and the recorded force signals,
as input/target pairs, were then used to train a multilayer
perceptron (MLP) neural network. A five-fold cross-validation
training/testing method was applied. The resulting performance
is a significant improvement over a previously proposed sEMG
processing method for the proportional, multi-DOF myoelectric
control task.

I. INTRODUCTION

Myoelectrically controlled upper limb prostheses have

seen significant advances in recent years. Yet, the function-

ality and intuitiveness of the current myoelectric prosthesis

is still very limited. This is due to two main factors. The

first one is the paradox between the functionality require-

ments and signal availability: the higher level of the limb

loss, the more functionalities need to be restored, while

less information can be obtained from the residual limb.

Recently, the revolutionary targeted muscle reinnervation

(TMR) procedure greatly addressed this issue [1], [2]. The

second factor, which is the main topic of the current study,

is that the current signal processing paradigms for sEMG

only allows sequential, on/off control. By contrast, the nat-

ural neuromuscular control is always a proportional and

simultaneous control of multiple DOFs. This disparity makes

the current control schemes unintuitive for the prosthetic

user, resulting in low clinical acceptance. To address this

issue, different approaches are being explored [3]–[6]. In

particular, Jiang et al. [4] showed that the multi-channel

mean square values (MSVs) can be modeled as a non-linear

mixture of the forces produced at the multiple DOF of a

muscular joint, which is termed the force functions. Thus, a

supervised source separation approach, employing multilayer

perceptron network (MLP), was proposed to estimate the

forces functions. The estimation can be used as the pro-

portional and simultaneous myoelectric control signals. The

results presented in [4] and a subsequent study [6] were very

promising, particularly for the two DOFs of the wrist: wrist

flexion/extension and ulnar/radial deviation. However, when

the third DOF, i.e. supination/pronation, was activated, the

estimation results were not satisfactory. The purpose of the

current study is to investigate possibilities of improving the

estimation performance of the force functions, by using other

sEMG features and a different training scheme for the MLP.

II. MATERIALS & METHODS

A. Experimental protocol

The experimental data used in the current study were ob-

tained from the previous study [6]. The experimental protocol

is repeated here for the sake of clarity. Twelve able-bodied

individuals with no known neuromuscular disorders (seven

males, five female; aged from 25 to 50 years) participated

in the experiment. Of the 12 subject, 11 were able to finish

the experiment protocol, thus the results are only presented

using these 11 subjects. These subjects will be referenced as

Sub1 - Sub11 in the following. The experimental protocol

was approved by the Research Ethics Committee of the

University of New Brunswick (REB File #2007-095). During

an experiment session, the subject sat in a chair with an

armrest on which the right upper arm and forearm of the

subject were secured. The right hand of the subject was

fixed at a neutral, palm facing inward, position by a custom

made handle. The handle was attached to a heavy duty

steel frame. A 6-axe force/torque transducer (Gamma FT-

130-10, ATI Industry) was mounted between the handle and

the steel frame. Eight sEMG electrodes were placed on the

arm: seven equally spaced around the forearm, and one on

the biceps. The subject was then instructed to perform a

series of anisotonic and isometric wrist contractions, at low

to medium force levels, during which both forces at the three

DOFs (wrist flexion/extension, radial/ulnar deviation, and

wrist pronation/supination) and the sEMG were acquired.

Two types of contraction sets were performed: single DOF

contractions, where only one of the three DOF was intention-

ally activated; and combined DOF contractions, where two or

three DOFs were intentionally activated simultaneously. Each

contractions lasted 15 to 30 seconds, and resting periods were

provided to avoid fatigue. For further details of these wrist

contractions and the data collection procedure, please refer

to [6]. The experiment setup is shown in Fig. 1.
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(a) Experiment setup (b) The 3D virtualization

Fig. 1. (a) The experiment setup. The force transducer (enlarged illustration on the right) is located between the handle securing the palm and the steel
frame. The sensed DOFs are: A/B→ flexion/extension, C/D → radial/ulnar deviation, E/F→ pronation/supination. (b) The 3D visualization of the forces
produced by wrist. The broken triangle indicates the resting position of the face of pyramid. The displacement of the pyramid in the figure is due to
simultaneous activations of flexion, ulnar deviation and pronation (reproduced from [6] with permission) ).

B. Data Processing

1) The generative model of sEMG: Jiang et al. proposed

a generative model for multi-channel sEMG [6]:

Z(t) = T[F(t)] (1)

where Z(t) = [z1(t), z2(t), . . . , zL(t)] is the MSVs of

the observed L-channel sEMG recording from the muscles

activating at a muscular joint; T[·] is an unknown non-linear

transformation, determined by the muscular synergy of the

activating muscles, the electrical and geometric properties

of the muscle tissue and the recording electrodes complex;

F(t) is a set of time varying force functions, representing the

intended force production, i.e. the activation levels at each

DOF of the joint. This is the desired multi-DOF proportional

control information for myoelectric control application. Un-

fortunately, only Z(t) is available. Thus the estimation of the

latent F(t) is a non-linear blind source separation problem,

for which there exists an infinite number of solutions [7].

Therefore, a priori information regarding the force functions

must be applied to restrict the space of solutions.

2) Multilayer perceptron estimation: In a study by

Jiang et al., the force functions produced at the 3 DOFs of the

wrist during anisotonic and isometric wrist contractions were

estimated using, among other things, a multilayer perceptron

(MLP) neural network [6]. In particular, the MSVs of the

multi-channel sEMG, Z(t), were used as the only sEMG-

channel feature, and thus the only inputs to the MLP. For the

network training phase, the data collected from single DOF

contractions (only one DOF was activated) were used: the

MSVs of these contractions were the inputs, and the forces

produced at the three DOFs were the training targets. After

the network was trained, the data collected from combined

DOF contractions were used as testing data. The MSVs were

the inputs to the network, and the corresponding outputs were

the estimation of the force functions. A multi-dimensional

R2 index were used to quantify the performance of the

estimation, i.e. the differences between the measured force

functions, and the estimation by the network. In general,

the MLP estimation performances in the previous study

were encouraging, especially when only the first two DOFs

were considered. However, the performances significantly

degraded when the third DOF, supination/pronation, was

activated. In the current study, two new approaches of the

MLP training were investigated in order to improve the

estimation performances. To evaluate the results of these

approaches, one of the methods investigated in [6] (MSV

feature and single DOF training of an MLP neural network)

was repeated to enable direct comparison.

3) sEMG features: It has been shown that four time-

domain features of the sEMG, i.e. mean absolute value

(MAV), zero-crossings, slope signs changes (turns) and

waveform length contain important control information [8].

These time-domain (TD) features are some of the most

widely used features for isotonic sEMG in the pattern

recognition based myoelectric control algorithms. Therefore,

it would be interesting to see if these sEMG features

can provide additional control information under anisotonic

contractions. In the current study, the TD feature set was

extracted from the multi-channel surface EMG using the

standard method [8], [9]. Estimation results when using the

TD feature set were compared with the results of [6].

4) Training method: In the previous study, the training

data only included single DOF contractions. One of main

reason of doing so was to validate the mixing hypothesis in

[6], consequently to demonstrate the ability of the proposed

approach in generalizing from the single DOF contractions to

combined DOF contractions. Theoretically, this generaliza-

tion is only possible for pure linear mixtures. When linearity

of the mixture is degraded, so is the generalization ability of

the method. Since it was shown that the mixture in (1) is

indeed nonlinear, the data from combined DOF contraction

may contain additional information regarding nature of the

mixing process. Therefore, in the current study, the data

from combined DOF contractions were also included in the

training data. The data from each contraction were segmented

into five segments, and a five-fold cross-validation procedure

4336



2 4 3 10 6 8 5 9 1 7 11

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Subject ID

E
st

im
at

io
n

 p
er

fo
rm

an
ce

 (
R

2
)

 

 

excl. DOF 3, TD+sgl.

incl. DOF 3, TD+sgl.

excl. DOF 3, MSV+sgl.

incl. DOF 3, MSV+sgl.

(a) Effect of new feature set

2 4 3 10 6 8 5 9 1 7 11

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Subject ID

 

 

excl. DOF 3, MSV+cmb.

incl. DOF 3, MSV+cmb.

excl. DOF 3, MSV+sgl.

incl. DOF 3, MSV+sgl.

(b) Effect of new training method

2 4 3 10 6 8 5 9 1 7 11

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Subject ID

 

 

excl. DOF 3, TD+cmb.

incl. DOF 3, TD+cmb.

excl. DOF 3, MSV+sgl.

incl. DOF 3, MSV+sgl.

(c) Effect of both approaches

Fig. 2. (a) The effects of the TD feature set. The network training method used to obtain these results is the same as in [6], i.e. only single DOF data
were used to train the network. The solid lines are the results obtained using the TD feature set, and the dashed lines are the results using the MSV feature
(from [6]). The horizontal lines are the corresponding average R

2 index over the 11 subjects for each case. The order of the subjects are ranked by the
MSV performance when the third DOF was excluded. (b) The effect of proposed training method (only MSV feature is used). The solid lines are the
results obtained using combined DOF contractions (denoted cmb. in the legend), and the dashed lines are obtained using only single DOF (denoted sgl. in
the legend). The horizontal lines are the corresponding average R2 index over the 11 subject of each case. Because of the five-fold cross-validation, five
R

2 indices were obtained for each subject during the combined training, which is indicated by the vertical bars at the corresponding traces. (c) The effect
of combining the TD feature set and the proposed training method. The conventions are the same as in plot (b)

was carried out. An segment from each contraction was then

chosen to form the testing set, and the rest were chosen to

form the training set. For each training/test block combina-

tion, the MLP was trained 50 times, and the network with

the highest R2 index (discussed in II-C) was retained. This

procedure was repeated for each of the five combinations

of test/training blocks and mean R2 and standard deviation

(SD) across the five combinations were calculated.

5) MLP structure: It was shown in the previous study

that for an eight channel sEMG recording with three DOF

of wrist activation, a MLP with one hidden layer consisting

of three neurons provided the best estimation performances.

The transfer functions of the hidden neurons and the output

neurons were hyperbolic tangent sigmoid and linear, respec-

tively. In a preliminary analysis (results not shown), a MLP

with the same construct also produced the best performance,

regardless of the dimension of the feature set [10]. Thus, the

results presented in the current study are obtained using an

MLP with this structure.

C. Performance index

The performance index, R2, in the previous study was also

used in the current study. It is a multi-variate index similar

to the one used in [11], and is defined as follows:

R2 = 1 −

D∑

i=1

N∑

t=0

(f̂i(t) − fi(t))
2

D∑

i=1

N∑

t=0

(fi(t) − fi(t))2

(2)

where D is the number of force functions, N is the number

of data samples, fi(t) is the ith force function, f̂i(t) is the

corresponding force estimate from the MLP, and fi(t) is

the temporal average of fi(t). The numerator in the second

term of (2) is the total mean square error (MSE) of the

estimates and the denominator is the total variance of the

force functions. The index defined in (2) is a global indicator

of the MLP’s ability to estimate the force functions, since

it represents the percentage of total variation of the force

functions captured by the estimation.

III. RESULTS

For an example of the experiment data, please refer to [6].

A. Effects of additional features

Using the original training method (only single DOF data),

when the TD feature set was used the R2 index was 86.8±
4.3% and 58.2 ± 8.5%, excluding and including the third

DOF, respectively. By comparison, when the MSV feature

was used, the corresponding R2 index on the same data was

81.1± 5.3% and 44.8± 7.7%, respectively. The TD feature

set improved the average estimation performance across all

the subjects compared to the MSV feature, particularly when

including the third DOF. The results are presented in Fig. 2a.

B. Effects of additional training data

When employing the proposed new training method, i.e.

using both single DOF data and combined DOF data to train

the network, the respective R2 index was 92.2 ± 1.9% and

77.1 ± 5.2%, for excluding and including the third DOF.

Only the MSV feature was used here, in order to exclude the

effect of the TD feature set. The new approach of including

combined DOF data in the training set outperformed the

training method in the previous study, such that the average

performance is significantly increased, and the variability

within subjects is reduced. The results are presented in

Fig. 2b.
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C. Combining the two approaches

When both of the proposed approaches are used, the R2

index was further increased to 95.1±1.2% and 83.7±3.5%,

for excluding and including the third DOF respectively. This

is a significant improvement of the estimation performance

of the force functions, particularly when the third DOF

(supination and pronation) is included. The results of using

both approaches are presented in Fig. 2c. In effect, the

combined approach indicates that the proposed estimator is

able to capture over 80% of the variabilities of the measured

force functions for the three wrist DOFs, even when simul-

taneously activated. Thus, it is possible to provide a rather

accurate control signal for proportional and simultaneous

control at the wrist joint for trans-radial amputees.

IV. DISCUSSION

The results in the current study demonstrate that both of

the proposed approaches provide improved force function

estimation performance. When comparing with the approach

used by Jiang et al. [6], the TD feature set alone provides

an improvement of 5.7% and 14.4%, respectively for ex-

cluding and including the third DOF; when using both the

TD feature set and including combined DOF data in the

training set, the improvement is increased to 14% and 38.9%,

respectively for excluding and including the third DOF. The

improvement obtained by introducing the TD feature set

indicates that the additional features do contain important

neural control information for anisotonic contractions, es-

pecially for the third DOF. However, the most significant

improvement comes with the inclusion of combined data

into the training set, particularly when including the third

DOF. The reason for this improvement may be two-fold.

Firstly, the muscle synergy among the distal muscles in

upper extremities may not be a simple linear mixture at

the spinal level, as suggested in the previous study. This

is because there are strong evidences supporting significant

direct cortical projections to these muscles. Additionally, the

nature of these cortical projections is not clearly understood,

and may be different between single DOF contractions and

combined DOF contractions. Secondly, the experiment setup

introduces force translations across the three DOFs, which

has been analyzed in the previous study. The translation

may vary from contraction to contraction, depending on how

the subject is performing the tasks. The results indicates

that the mixing process, denoted by T[·] in (1), may have

different characteristics between single DOF contractions and

combined DOF contractions. The results in both the current

and the previous study by Jiang et al. [6] only investigated

estimating the force functions using the sEMG together

with the measured forces from the wrist of the ipsilateral

limb. However, for unilateral upper-limb amputees, the force

function targets of the amputated limb is no longer available

and this approach is therefore not clinically applicable. In a

preliminary analysis (not published), the authors investigated

an alternative approach to obtaining the force function targets

for the amputated limb, by measuring the forces produced by

the contralateral wrist during mirrored bilateral movements

for the two upper limbs, albeit only for two wrist DOFs [10].

The results of this analysis is documented in a paper, recently

submitted, which shows that the combined approach of

this study together with the new bilateral training paradigm

provided an estimation performance of 0.92 ± 0.02% on

10 able-bodied subjects when using forces from the wrist

contralateral to the measured sEMG [12]. Additionally the

performance was 0.78 ± 0.04% for one subject with a con-

genital malformation of the left forearm, indicating that using

four TD features and an MLP trained with combined DOF

data from the limb contralateral to the amputation, might be

a possible solution for unilateral upper-limb amputees.
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