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Abstract— This paper uses non-linear support vector regres-
sion (SVR) to model the blood volume and heart rate (HR)
responses in 9 hemodynamically stable kidney failure patients
during hemodialysis. Using radial bias function (RBF) kernels
the non-parametric models of relative blood volume (RBV)
change with time as well as percentage change in HR with
respect to RBV were obtained. The ε-insensitivity based loss
function was used for SVR modeling. Selection of the design
parameters which includes capacity (C), insensitivity region (ε)
and the RBF kernel parameter (σ) was made based on a grid
search approach and the selected models were cross-validated
using the average mean square error (AMSE) calculated from
testing data based on a k-fold cross-validation technique. Linear
regression was also applied to fit the curves and the AMSE was
calculated for comparison with SVR. For the model based on
RBV with time, SVR gave a lower AMSE for both training
(AMSE=1.5) as well as testing data (AMSE=1.4) compared to
linear regression (AMSE=1.8 and 1.5). SVR also provided a
better fit for HR with RBV for both training as well as testing
data (AMSE=15.8 and 16.4) compared to linear regression
(AMSE=25.2 and 20.1).

I. INTRODUCTION

Hemodialysis is regarded as a life sustaining therapy for
kidney failure patients. It removes the excess fluid accu-
mulated in the patient’s body using the process of ultrafil-
tration. Despite technological advances in the development
of devices that can continuously monitor the hemodynamic
state of patients during hemodialysis, the under-lying com-
plications due to progressive reduction in blood volume are
still not fully understood. In modern hemodialysis machines,
devices to continuously measure the hemoconcentration of
blood constituents are usually employed, allowing the indi-
rect estimation of relative blood volume (RBV) change [1],
[2]. Previous studies generally showed a decreasing trend in
RBV [3], [4] which reflected the effect of fluid removal on
the circulating blood volume.
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In order to maintain the stability of patients during fluid
removal, compensatory responses that include peripheral
sympathetic vasoconstriction and modest heart rate (HR)
increase are believed to play an important role [5], [6].
A study by Krepel [7] has found a weak but significant
linear correlation between the reduction in RBV and the HR
increase in stable patients during hemodialysis. However we
believe that during hemodialysis the HR shows a non-linear
response, as the patient goes from a state of hypervolemia
to normovolemia or mild hypovolemia. To accurately model
this non-linear HR response a more sophisticated non-linear
curve fitting technique is required compared to a simple
linear regression. In this paper, we propose a non-linear curve
fitting approach known as support vector regression (SVR)
to assess the RBV and HR responses during the course
of hemodialysis. SVR is an efficient non-parametric non-
linear regression technique based on support vector machines
which was first introduced by Vapnik [8]. SVR has recently
been applied in the biomedical field to model the heart rate
response to various workloads during treadmill exercise [9],
[10] and to assess the non-linear cardiovascular response to
metabolic demand during cycle exercise [11].

To our knowledge, this is the first study to model the
response of RBV and HR during hemodialysis using support
vector regression. We applied SVR to model the response
of RBV with respect to time as well as the percentage
change in HR to RBV in hemodynamically stable patients
during hemodialysis with ultrafiltration. A Radial Bias Func-
tion (RBF) kernel was used to model these two responses
with the SVR parameter selection based on a grid search
approach. The selected models were tested using a k-fold
cross-validation technique. These modeled curves can be
used as a reference response for stable patients undergoing
hemodialysis and can be utilized to monitor the stability of
patients as any deviations from these generalized curves can
give an early indication of complications in the patients. They
can also be utilized in designing feedback control systems to
guide the actual changes in RBV and HR by automatically
adjusting the input variables.

II. MATERIALS AND METHODS

This study was conducted at the hemodialysis unit, Prince
of Wales Hospital, Sydney, Australia. A group of 12 hemo-
dynamically stable renal failure patients with no symptoms
of intradialytic hypotension for the last three months were
asked to participate in the study. All patients were routinely
dialyzed three times weekly for 4-5 hours. All patients
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were dialyzed using an AK200S (Gambro, Lund, Sweden)
machine with a polyflux 210H (Gambro, Lund, Sweden)
dialyzer. The blood flow rate ranged from 300-350 ml/min,
the dialysate flow rate was 500 ml/min and the dialysate
temperature was set at 36oC. The physical characteristics of
the patients included in this study are represented as mean
± standard deviation and are given as: subjects (n=12), age
in years (66 ± 11), height in cm (164 ± 10), length of
time on dialysis in months (13.3 ± 8.5), dialysis duration in
hours (4.55 ± 0.42), pre-dialysis weight in kilograms (89.3
± 20.5), post-dialysis weight in kilograms (86.3 ± 20), and
fluid removed in litres (3 ± 1.2). The sydney area health
service human research ethics committee gave their approval
in the study and an informed consent was obtained before
the data collection.

The participating patients were asked to arrive in the
dialysis unit around 15 minutes before the start of the
routine dialysis time. After an initial rest of 5 minutes,
the data recording was started while the patient rested in a
semi-recumbent position on the dialysis chair. Continuous
ECG was measured in lead II configuration using a bio-
amplifier (ST4400, ADInstruments, Sydney, Australia) and
was digitized at a sampling rate of 1000 Hz using a Powerlab
data acquisition system (ADInstruments, Sydney, Australia).
RBV was monitored throughout dialysis at 10 minutes in-
tervals using a blood volume sensor (BVS) embedded into
the dialysis machine. The BVS uses an ultrasonic device
to measure the blood density. RBV was displayed as the
percentage change relative to the start of dialysis calculated
by the following formula:

RBVt(change in percentage) = [
Htt

Ht0
− 1] × 100 (1)

where Ht0 is the hematocrit at the start of dialysis and
Htt is the hematocrit level at time t during hemodialysis.
Synchronous to each RBV measurement, a 4 minute segment
of ECG was selected and mean HR was calculated by taking
the inverse of RR interval using an R-wave peak detection
algorithm, which involves low-pass filtering, differentiation,
and threshold peak detection.

III. MODELING

A. Support vector regression

The SVR technique is based on a support vector machine
(SVM), which was first introduced by Vapnik in 1995 and
is firmly grounded in the framework of statistical learning
theory or Vapnik-Chervonenkis (VC) theory [12]. The basic
idea is to map the input data into a high dimensional feature
space using non-linear mapping and then a linear regression
problem is obtained in the feature space. A detailed theo-
retical background of SVR can be found in [12]. However
in this section a brief overview of ε-insensitivity SVR based
modeling is given [9].

Consider a training data set of input vector {xi}
N
i=1

along
with corresponding output vector {yi}

N
i=1

where N is the
number of data points. Support vector regression aims to
find a function f(x) that has at most ε deviations from the

actually obtained targets for all the training data and is as
flat as possible. The function has the following form:

f(x) = 〈ω, φ(x)〉 + b (2)

where 〈〉 is the dot product and {φ(xi)}
N
i=1

represents
the high-dimensional feature spaces which are non-linearly
transformed from x. The coefficients ω and b are estimated
by minimizing the regularized risk function:

R(ω) =
1

2
‖ω‖2 + C

1

N

N∑
i=1

Lε(yi, f(xi)) (3)

The first term 1

2
‖ω‖2 is the regularized term that is used

as a flatness measurement of f(x), C is a fixed constant
determining the tradeoff between the training error and the
VC dimension of the model, and Lε is the ε-insensitivity loss
function defined as:

Lε(yi, f(xi)) =

{
|yi − f(xi)| − ε |yi − f(xi)| > ε

0 otherwise
(4)

This defines an ε-tube. The radius ε of the tube and the
regularization constant C are user defined. The parameter ε

controls the width of the ε-insensitive zone, used to fit the
training data.

By solving the above constrained optimization problem,
we have:

f(x) =

N∑
i=1

βiφ(xi) · φ(x) + b (5)

where the coefficients βi corresponds to each (xi, yi) and is
non zero only for a small subset of the training data named as
support vectors. In SVR, by only using the support vectors,
the same solution can be obtained as using all the training
data points.

A kernel function can be introduced to estimate the inner
product in feature space, this way all the computations can
be performed directly in the input space. By using the kernel
function: k(xi, xj), the above equation can be written as:

f(x) =

N∑
i=1

βik(xi, x) + b (6)

For nonlinear SVR, a number of kernel functions have
found to provide good generalization capabilities, such as
linear, polynomial, radial basis function (RBF) and sigmoid.
In this paper, we have used the RBF kernel to model both the
change in RBV with respect to time as well as HR response
to RBV during hemodialysis. The RBF kernel is given by:

k(u, u′) = exp(−
‖u − u′‖2

2σ2
) (7)

A brief introduction of SVR can be found in [12], [8],
[9]. Details about the selection of radius ε of the tube, kernel
function and regularization constant C can be found in [13],
[8].
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B. Parameter selection and model verification

The modeling was based on 9 out of 12 patients with sim-
ilar RBV and HR profile during the course of hemodialysis.
The other three patients were excluded from the modeling
as they all had a decreasing trend in heart rate. One patient
was hypertensive at the start of dialysis and her blood
pressure kept high throughout dialysis while other two had
fluctuations in RBV with a total drop of only 5% by the end
of dialysis.

To select the best optimized parameters for SVR and to
verify the model, a grid search was combined with a k-fold
cross-validation technique. For cross validation, the selected
data set of nine patients was divided into 3 sections. Two
sections served as training set and the third section was
used to test the model. The test section changed for the next
iteration so after three iterations of testing and training, each
sample was tested once.

A grid search approach was used to choose the best com-
bination of SVR parameters. First the range of parameters C,
σ, and ε was specified. The selected parameter ranges were C

(1, 50, 500, 5000), σ (2, 10, 50, 100, 200, 300, 500) and ε (1,
1.5, 2, 2.5) for modeling the RBV with respect to time and C

(1, 50, 500, 5000), σ (1, 2, 4, 8, 10, 100) and ε (3, 4, 4.5, 5)
for modeling the HR response to RBV change. Next, cross
validation was carried out for every group of parameters
(C, σ, ε). The average mean square error of the test data
was calculated three times for each group of parameters (C,
σ, ε). Finally the group of parameters which minimized the
average mean square error was chosen as the parameter for
SVR. In simple mathematical terms, we solved the following
objective function:

minC,ε,σ(

n∑
i=1

MSEi) (8)

where n is the number of sections, MSE is the mean square
error calculated from the true output yj and the estimated
output ŷj is given by:

MSE =
1

n

N∑
i=1

(yj − ŷj)
2 (9)

Linear regression was also applied to fit the curves and
AMSE was computed to compare it with SVR.

IV. RESULTS AND DISCUSSION

Fig. 1(a) shows the SVR model identification for RBV
with respect to time using RBF kernel with the parameters
listed in table I using the training data. Fig. 1(b) shows the
model verification based on testing data. The AMSE for the
test as well as training data set is tabulated in table II.

Linear regression curves for the same testing and training
data are also estimated and the corresponding AMSE is also
reported in table II. Based on the SVR model, the change
in RBV during the course of hemodialysis can be divided
into two distinct phases: 1) a fast initial drop during the first
60 mins, 2) a slower drop as the dialysis process reaches its
final stages. The initial sharp fall in RBV may be driven by
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Fig. 1. RBF kernel based SVR model for RBV with time: (a) model
identification based on training data (n=6) and (b) model verification based
on testing data (n=3).In (a) the solid line represents the estimated input-
output regression curve. The * are the actual training data points. The dotted
lines represent the ε-insensitivity tube and the circled * points are the support
vectors.

TABLE I

SELECTED MODEL PARAMETERS FOR RBF KERNEL BASED

SVR

Parameter RBV versus Time HR versus RBV
ε 2 5
C 500 5000
σ 200 10

Support vectors 10(12%) 27(32%)

a rapid unloading of blood volume from the central veins
due to high central venous pressure in the hypervolemic
state, whereas the later slower fall may indicate an increased
refilling of central circulation with blood volume shift from
the peripheral microcirculation.

Fig. 2(a) and 2(b) shows the SVR model identification
and verification for HR with respect to RBV using training
and testing data respectively. SVR parameters that minimize
the AMSE are reported in table I. The average mean square
error for training and testing data are given in table II.
For comparison the average mean square error for linear
regression is also tabulated in II.

Based on SVR, the modeled HR response to changes in
RBV during hemodialysis showed a slowing trend at the
initial rapid drop in RBV to about 5% and a subsequent
rise as the RBV falls further. In comparison with other
haemodialysis studies, a similar biphasic HR change over the
dialysis period has been observed in some [3], [14], while
others showed an increasing trend in HR without the initial
drop [15], [16]. We believe that the initial slowing down of
HR can be regarded as a transition from hypervolemia to
normovolemia whereas the augmentation of HR at the later
stages can be regarded as a transition from normovolemia to

TABLE II

COMPARISON OF AMSE FOR SVR AND LINEAR REGRESSION

CURVES FOR RBV WITH TIME

RBV versus Time HR versus RBV
Linear RBF Linear RBF

Testing error 1.8 1.5 20.1 16.4
Training error 1.5 1.4 25.2 15.8
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Fig. 2. RBF kernel based SVR model for HR with RBV: (a) model
identification based on training data (n=6) and (b) model verification based
on testing data (n=3).

hypovolemia. These mean curves can be further tuned by
varying the SVR parameters to fit the individual patients
response which can be utilized to design controllers for
automated regulation of physiological variables.

V. CONCLUSIONS

This paper used RBF kernel based support vector regres-
sion to model the RBV response with respect to time as
well as HR response to RBV in 9 hemodynamically stable
patients with similar HR profile during regular hemodialysis.
The SVR parameters were selected based on a grid search
approach and the model was verified using a k-fold cross-
validation technique. These modeled curves can be used as
reference inputs to a controller that can guide the actual
changes in RBV and HR by adjusting some control input
like ultrafiltration rate (UFR). Such feedback control systems
can help to ensure the stability of patients by automatically
adjusting the UFR in case the actual changes in RBV or HR
deviates from these reference curves.
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