
  

  

Abstract — We present applications of recently developed 
algorithms for data-driven nonlinear systems identification to 
the study of cardiovascular and respiratory control 
mechanisms on an integrated systems level, utilizing 
experimental data obtained during resting conditions. 
Specifically, we consider cerebrovascular regulation during 
normal conditions, orthostatic stress and autonomic blockade 
in a two-input context, as well as respiratory control during a 
model opioid drug (remifentanil) infusion in a closed-loop 
context. The results illustrate the potential of using data-driven 
modeling approaches, which do not rely on prior assumptions 
about model structure, for modeling physiological systems, as 
they are well-suited to their complexity. They also illustrate the 
potential of utilizing spontaneous physiological variability, 
which can be monitored noninvasively and does not require 
experimental interventions, to extract rich information about 
the function of the underlying mechanisms. We also discuss 
some important practical issues, such as the presence of 
nonstationarities and model order selection, related to the 
application of similar approaches to the analysis of 
physiological systems. 
 
 

I.  INTRODUCTION 
 
Homeostasis, which describes the ability of living 

organisms to maintain themselves in a state of dynamic 
balance, is maintained by the complex interaction of 
multiple mechanisms, which typically involve feedback and 
nested loops and are often characterized by inherent 
nonlinearities. As a result of these mechanisms and their 
constant interaction with a fluctuating environment, 
stochastic variations over a wide range of time scales arise in 
physiological signals. Consequently, resting (spontaneous) 
physiological variability, which can be nowadays monitored 
continuously and noninvasively, contains rich information 
about the function of the underlying mechanisms under 
natural operating conditions, i.e., without any experimental 
intervention. Hence, it has been used extensively for their 
study, along with various signal processing and 
mathematical modeling/ systems identification techniques, 
opening up a host of potential patient-customized diagnostic 
and therapeutic applications (e.g. model-based physiological 
control) applications. 

In this context, cardiovascular and respiratory control 
mechanisms are of particular importance as they regulate 
variables such as blood pressure and flow, heart rate and 
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ventilation, which are crucial for the operation of the human 
organism. In the present paper we showcase the application 
of utilizing spontaneous physiological variability and 
recently developed nonlinear, data-driven systems 
identification approaches to the investigation of these 
mechanisms on an integrated systems level. Specifically, we 
consider cerebrovascular regulation under normal and 
various experimental conditions in a two-input context, as 
well as the investigation of the effects of opioid drugs on 
respiratory control in a closed-loop context.  

The cerebrovascular bed is controlled by multiple 
homeostatic mechanisms (myogenic, endothelial, neural 
etc.) which are able to maintain cerebral blood flow (CBF) 
relatively constant despite changes in cerebral perfusion 
pressure [1]. Cerebral autoregulation was long viewed as a 
static phenomenon, whereby the ‘‘steady-state’’ pressure-
flow relationship is described by a sigmoidal curve with a 
wide plateau, suggesting that CBF remains constant despite 
changes in pressure within certain bounds. However, with 
the development of Transcranial Doppler (TCD) 
ultrasonography for the noninvasive measurement of CBF 
velocity (CBFV), in the middle cerebral artery with high 
temporal resolution, it was found that spontaneous CBFV 
variations, may vary rapidly in response to variations of 
systemic arterial blood pressure (ABP) over various time 
scales [2]. Furthermore, the cerebrovascular bed is 
exquisitely sensitive to changes in arterial CO2 [1]. 
Spontaneous fluctuations of arterial CO2 tension around the 
mean, assessed by end-tidal CO2 (PETCO2) measurements, 
have a significant effect on slow fluctuations of both CBFV 
as well as regional blood flow, assessed by blood oxygen 
dependent level functional magnetic resonance imaging [3], 
[4]. It has also been suggested that cerebral hemodynamics 
are characterized by nonlinearities, both on the basis of the 
low coherence values between ABP and MCBFV below 
0.07 Hz [2] and by exploring the use of nonlinear Volterra 
models [5]. Therefore, we have introduced a two-input, 
nonlinear model of cerebral hemodynamics [6], shown in 
Fig. 1, and in the present paper we show results obtained 
from utilizing this model to study cerebrovascular regulation 
during normal conditions, orthostatic stress and autonomic 
blockade.  

Much of the understanding of human respiratory control is 
based upon characterization of the ventilatory feedback loop, 
which is shown in Fig. 2 in a simplified form, supplemented 
by inferences from work in animals. Ventilatory responses 
are usually examined during hypoxic or hypercapnic 
stimulation [7]. Moreover, it has been shown that 
spontaneous breath-to-breath fluctuations in PETCO2 are 
responsible for a considerable fraction of the normal 
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Fig. 2. Simplified diagram of the ventilatory
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Fig. 1. Two-input, nonlinear model of cerebrovas
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In the case of cerebrovascular regulation, we utilized a 
Volterra-equivalent network termed the Laguerre-Volterra 
Network (LVN) to obtain the system Volterra kernels (Fig. 
1). The LVN methodology combines Laguerre function 
expansions and networks with polynomial activation 
functions and has been shown to yield accurate models of 
high-order and multiple-input systems from short input-
output records [6], [14]. In this context, the output of the 
two-input mode of cerebrovascular regulation of Fig. 1 in 
terms of the MABP and PETCO2 inputs is given by: 
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where xi: MABP, PETCO2. The linear and nonlinear Volterra 
kernels kq describe the linear and nonlinear effects of MABP 
and PETCO2 (as well as their nonlinear interactions) at time 
lags (m1,...,mq) before the present time lag n on CBFV and 
are used to quantify dynamic pressure autoregulation and 
CO2 reactivity respectively. The Volterra kernels in (5) can 
be expressed in terms of the LVN parameters, which are in 
turn estimated via an iterative gradient descent algorithm 
from the input-output data. Therefore, dynamic pressure 
autoregulation and dynamic CO2 reactivity are described by 
kqxi…xi for i=1 and i=2 respectively.  

In all the experimental protocols considered herein, PETCO2 
was measured by mass spectrometry, ABP was monitored 
continuously in the finger by photoplethysmography and 
CBFV was measured with a 2-MHz Doppler ultrasound 
system in the right middle cerebral artery. The beat-to-beat 
values of ABP and CBFV and the breath-to-breath values of 
PETCO2 were interpolated and resampled at 1 Hz to obtain 
equally spaced time series. Model estimation was performed 
using 6 min segments.  

The experimental data during resting conditions (total 40 
mins) were collected from 10 healthy subjects (age 30.4± 
20.1 years). The experimental data during orthostatic stress 
were collected from 10 healthy subjects (age 32.1±7.3 
years), whereby orthostatic stress was induced by graded 
lower body negative pressure (LBNP) after at least a 30-min 
baseline period according to the following protocol: -15 
mmHg and -30 mmHg for 13 min, and then progressively by 
-10 mmHg every 13 min to the point of maximal tolerance. 
Finally, experimental data during autonomic blockade were 
recorded from 12 healthy subjects (age 29±6 years). 
Trimethaphan, which induces ganglionic blockade, was 
infused at a dose of 3 mg/min. Blockade was assessed by 
evaluating both the heart rate and pressure responses to the 
Valsalva maneuver. The infusion dose was increased 
incrementally by 1 mg/min until the heart rate response 
during the Valsalva maneuver was eliminated. Since the 
low-frequency ABP variability after ganglion blockade was 
reduced, oscillatory lower body negative pressure (LBNP) 
with a magnitude of 0 to -5 mmHg was applied in 10 
subjects.  

We used the normalized mean-square error (NMSE) of 
the output prediction to assess model performance and 

determine model complexity in all cases. This was done by 
utilizing statistical criteria to assess the significance of the 
NMSE reduction achieved by more complex models, such as 
the minimum description length criterion and by comparing 
the percentage NMSE reduction to the α-percentile value of 
a χ2 distribution with p degrees of freedom (where p is the 
increase of the number of free parameters and α=0.05). 
 

III. RESULTS 
 
A. Cerebrovascular regulation 

 
The average achieved prediction NMSEs are given in 

Table I for one input (ABP or PETCO2) and two-input (ABP 
and PETCO2) linear and nonlinear LVN models in the case of 
resting conditions. ABP fluctuations explain most of the 
CBFV variations; however, the incorporation of PETCO2 in 
the model reduces the achieved output prediction NMSEs. A 
significant reduction in the prediction NMSE is also 
observed when nonlinear models are used [6]. Hence, the 
previously reported low coherence values between ABP and 
CBFV below 0.07 Hz are due to the effect of both 
nonlinearities and CO2 fluctuations. This is further 
illustrated in Fig. 3, where we show the decomposition of 
the model prediction for a representative data segment into 
its linear and nonlinear components, as well as into its ABP 
and CO2 components [6]. Examination of the model 
residuals in the frequency domain (Fig. 3 – right panels) 
reveals that the contribution of these terms, which 
corresponds to the area between the blue and red lines, is 
more pronounced below 0.05 Hz. 

The first-order ABP and CO2 kernels, averaged over all 
subjects, are shown in the time and frequency domains in 
Fig. 4. The high-pass characteristic of the linear ABP 
frequency response implies that slow MABP changes are 
attenuated more effectively, i.e., autoregulation of pressure 
variations is more effective below 0.07 Hz. The tight 
standard error bounds imply that the form of the linear ABP 
kernel was consistent across subjects. The linear first-order 
CO2 kernel exhibits a low-pass characteristic rather than the 
high-pass characteristic of its MABP counterpart. Typical 
second-order MABP and CO2 kernels are shown in Fig. 5. 
Most of the power of the second-order kernels lies below 0.1 
Hz. The second-order kernels were more variable compared 
to the linear kernels. Moreover, their frequency domain 
peaks were related to their linear counterparts. 

 

  TABLE I 
CEREBROVASCULAR REGULATION DURING RESTING 

CONDITIONS: PREDICTION NMSES (MEAN±SD) FOR ONE-
INPUT AND TWO-INPUT MODELS. 

Model  
order 

Model inputs 
[NMSE in %] 

 ABP PETCO2 ABP & PETCO2  

1 42.2 ±7.2 93.2±2.7 38.2±6.5 

2 25.7± 8.3 78.2±25.7 22.0 ± 6.0 

3 26.8±7.6 71.7±4.8 20.2±5.4 
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 The first-order kernels obtained during orthostatic stress 
(baseline to -50 mm Hg LBNP) are shown in Fig. 6 [15]. 
The magnitude of the ABP kernel in the very low frequency 
(VLF) range (f<0.04 Hz) increased gradually during LBNP, 
whereas the magnitude in the low frequency (LF; 0 
.04<f<0.15 Hz) and high frequency (HF; 0.15<f<0.3 Hz) 
ranges remained relatively unchanged. Consequently, the 
high-pass characteristic of the ABP linear frequency 
response at baseline was gradually altered to a band-stop 
characteristic at high levels of LBNP values. The CO2 kernel 
exhibited a low-pass characteristic that was not altered 
during LBNP; however, its magnitude values decreased with 
increasing LBNP (results not shown, see [15]).  

  

 
Similar effects of orthostatic stress on the second-order 

ABP and CO2 kernels were observed. As a result, the 
spectral power of the ABP first and second-order 
components, which was calculated in the VLF, LF and HF 
ranges by integrating the corresponding frequency responses 
between the respective frequency limits, increased during 
LBNP (P<0.05 at -40 and -50  mm Hg for the VLF range). 
On the other hand, the spectral power of the CO2 
components decreased during LBNP (P<0.05 at -40  and -50 
mm Hg LBNP in the VLF and LF ranges [15]).  
 

 
 The averaged first-order ABP kernel during baseline, 
ganglionic blockade and simultaneous blockade and LBNP 
is shown in Fig. 7 in the frequency domain (top panels). The 
high-pass characteristic during baseline was altered to a 
band-stop characteristic during ganglion blockade (both 
without and with simultaneous LBNP), as in the case of 
orthostatic stress, i.e. its magnitude increased in the VLF and 
LF ranges. The dynamic CO2 reactivity linear component 
exhibited a low-pass characteristic during baseline and 

 
Fig. 6. Group-averaged first-order ABP kernels in the frequency 
domain (F1) during baseline and LBNP-induced orthostatic stress 
(solid line: mean value, dotted line: SE). Note the increase in very-
low-frequency (VLF, f<0.04 Hz) magnitude during LBNP. 

 
 

Fig. 5. Representative second-order MABP and CO2 kernels. Left 
panel: time domain, right panel: 2D-FFT magnitude. 

 
Fig. 4. First-order MABP and CO2 kernels (solid lines) and 
corresponding standard errors (dotted lines), averaged over all 
subjects – resting conditions. Left panel: time domain, right panel: 
FFT magnitude. 

 
Fig. 3. Decomposition of model prediction of the two-input 
nonlinear model of cerebrovascular regulation into linear and 
nonlinear components, as well as into ABP and CO2 components, 
for a representative data segment in the time (left) and frequency 
(right) domains - resting conditions. 
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ganglionic blockade (Figure 7, bottom panels), albeit with 
decreased magnitude during the latter. The second-order 
model components are shown in Fig. 8 in the frequency 
domain averaged over all subjects. Most of their power 
resides below 0.15 Hz and they were affected by ganglionic 
blockade similarly to their first-order components; the values 
of f2MABP and f2CO2 increased and decreased respectively. The 
spectral power of k1MABP increased significantly in the VLF 
range (P<0.01) during ganglion blockade and in the VLF 
and LF ranges (P<0.05) during simultaneous blockade and 
LBNP. On the other hand, the differences in the linear CO2 
kernel spectral power were marginally significant, mainly 
due to the more pronounced variability of the individual 
estimates. The second-order components exhibited similar 
trends with the differences being marginally significant in 
the LF range for the MABP and PETCO2 components between 
baseline and ganglion blockade (without LBNP). 
 

 
 
 

 
 
 

B. Respiratory control during opioid infusion 
 
The effects of remifentanil on the respiratory variables 

were: (i) a dose-dependent decrease in respiratory rate that 
was due to increases in duration of expiratory time (TE) and 
its variability coefficient (results not shown, see [16]) (ii) VT 
initially decreased (at 0.7 ng/ml) but increased at higher 
levels towards baseline values and (iii)  PETCO2 increased 
and became more variable. The spectral power of PETCO2 and 
VT was calculated by integrating their PSD functions from 0 
to 0.3 cycles/ breath. An increase over the entire frequency 
range was observed for PETCO2. VT spectral power 
increased during remifentanil infusion, albeit less 
pronouncedly and above 0.02 cycles/ breath [16]. Nonlinear 
models reduced the prediction NMSEs significantly in all 
cases and in both directions of the ventilatory loop [16]. 
Representative linear and nonlinear model predictions are 
shown in Fig. 9. PETCO2 variations mainly account for the VT 
post-sigh response, as sighs are clearly correlated with sharp 
PETCO2 drops (as expected), which in turn influence VT. 
These sharp drops are evidently accounted by the VT  
PETCO2 model. In the frequency domain, the incorporation 
of nonlinear model terms improved performance over a wide 
range of frequencies below 0.03 cycles/breath. 

The averaged first-order kernels for the forward part of 
the ventilatory loop are displayed in Fig. 10, when both VT 
(blue) and VT/TTOT (black) were used to assess ventilatory 
variability. Their form during baseline suggests that an 
increase in PETCO2will cause an increase in VT (or VT/TTOT), 
with the maximum instantaneous effects occurring at 4 and 8 
breaths after the PETCO2 increase. The kernel values 
decreased during remifentanil, with the decrease being more 
evident for the second peak. An undershoot at 13 breaths 
was observed during baseline only. For the reverse branch of 
the ventilatory loop (V  PETCO2), the form of the first-
order kernel suggests that an increase in ventilation will lead 
to a decrease in PETCO2, with the effects occurring almost 
instantaneously, i.e., within the first 2 breaths (results not 
shown). Remifentanil infusion did not alter these 
characteristics; however, the kernel values increased at all 
levels, suggesting a stronger dynamic effect of ventilatory 
variability on PETCO2.  
 

 

 
 
Fig. 9. PETCO2 (left panel - dotted line) and VT (right panel - dotted line) 
time series during baseline, used for model estimation in both pathways 
of the ventilatory loop, and corresponding nonlinear model predictions 
(PETCO2,V and VT,CO2 respectively, solid lines). The large drops in PETCO2 
induced by deep breaths (sighs) are clearly accounted by the VT  
PETCO2 model (left - solid line), while PETCO2 changes account mainly for 
the post-sigh VT response (right – solid line). 

 

 
 

Fig. 8. Second-order component of dynamic pressure autoregulation 
(top panels) and CO2 reactivity (bottom panels) in the frequency 
domain (2D FFT) during baseline and ganglionic blockade, 
averaged over all subjects. 

Fig. 7. Linear component of dynamic pressure autoregulation (top 
panels) and CO2 reactivity (bottom panels) during baseline and 
ganglionic blockade in the frequency domain, averaged over all 
subjects (Mean±SE). The magnitude of f1MABP in the VLF and LF 
ranges (below 0.15 Hz) increased during ganglion blockade. 

4364



 

The above observations are quantified
power of the first- and second-order k
pathways shown in Fig. 11. For the che
(left), a decrease was observed in the spec
and k2. This decrease was statistically signif
the lowest level of remifentanil infusion f
more pronounced differences were observe
was used as the model output. For the 
(right), the k1 spectral power increased sign
during all remifentanil levels for VT). The 
the second-order model components k2 in
(P<0.05 at 0.7 ng/ml). 

   
IV. DISCUSSION 

 
The presented results illustrate the pote

data-driven nonlinear modeling approache
cardiorespiratory regulatory mechanisms 
general context, physiological systems o
level. They also suggest that rich inform
system function can be extracted fro
physiological variability, which does n
experimental interventions and can be
measured in real life clinical situations. T
shown in the cases considered above wher
experimental and pharmacological interv
system characteristics was studied, can als
induced by such interventions, providing in
the contribution of different mechanisms t

Fig. 11. Spectral power of the first and second-ord
for the chemoreflex (left) and reverse (right) path
power of both the linear and nonlinear chemo
between 0 and 0.3 cycles/ breath decreased d
infusion. * P<0.05, ** P<0.01 compared to baseline

Fig. 10. Averaged first-order kernels for the che
whereby both VT (blue) and VT/TTOT (black) w
ventilatory variability. Remifentanil decreased the
values, particularly of the second peak. A secondary
also observed between 15 and 20 breaths. 

 
d by the spectral 
kernels for both 
emoreflex branch 
ctral power of k1 
ficant only during 
for VT; however, 
ed when VT/TTOT 
reverse pathway 

nificantly (P<0.01 
spectral power of 
ncreased as well 

 

ential of utilizing 
s to the study of 
and, in a more 

on an integrated 
mation regarding 
om spontaneous 
not require any 
e often readily 

This approach, as 
reby the effect of 
ventions on the 
so assess changes 
nformation about 
that are involved 

(e.g., neural mechanisms in the 
regulation). Consequently, our kn
function during normal and patho
may be further enhanced and su
applied to diagnostic and therapeutic

Since physiological mechanisms
a large number of variables, it is im
much information as possible, as sh
cerebrovascular regulation, whereb
CO2 as an input variable yielded m
of the system dynamics, particu
frequency range. 

An issue that deserves further d
of nonstationarity (time-varying be
systems, since it attains great signif
time applications. These syst
nonstationarities, high complexity 
large number of variables, some 
unobservable in practice. Note that
widely different time scales: fr
mechanisms to circadian rhythms. M
may give rise to nonstationarities in 
example of this situation was obse
regulation, whereby the incorpo
variability as an additional de
nonstationary behavior of the dynam
ABP and CBFV. The time-varyin
first-order cerebrovascular system 
from the two-input model of Fi
evolution over the entire 40 
representative subject and for slidin
min overlap, are shown in the time-f
The ABP first-order kernel is mo
stationary) than its CO2 cou
nonstationarities are observed in the

 Finally, another issue of great im
selection. This is usually achiev
criteria, such as the Akaike or th
length criteria; however, these are n
for nonlinear systems and may yield
out-of-sample data for this purpose 
in cases where the amount of data
significant nonstationarities are 
dynamics. We are currently investi
the Bayesian methods to perform m

 

Fig. 12. Time-varying characteristics of th
system ABP and CO2 dynamics.  

k1,MABP k
 

der Volterra kernels 
hways. The spectral 
oreflex components 
during remifentanil 
. 

 
emoreflex pathway, 
ere used to assess 
e impulse response 
y positive peak was 

 

case of cerebrovascular 
nowledge about system 
physiological conditions 

uch approaches may be 
c purposes. 
s are typically affected by 

mportant to incorporate as 
own above in the case of 
by the incorporation of 
ore accurate descriptions 

ularly in the very low 

discussion is the presence 
ehavior) in physiological 
ficance in adaptive, real-
ems exhibit inherent 
and are influenced by a 
of which may often be 
t these factors may span 
rom local, fast acting 
Moreover, their influence 

the obtained models. An 
erved in cerebrovascular 
ration of arterial CO2 
terminant reduced the 
mic relationship between 
ng characteristics of the 

dynamics, as obtained 
ig. 1 by tracking their 

min record for one 
g 6 min segments for a 5 
frequency plot of Fig. 12. 
ore consistent (i.e. more 
unterpart; also, more 
 lower frequency range.  

 
mportance is model order 
ved by using statistical 
he minimum description 
not specifically designed 
d biased results. Utilizing 
may also pose problems 

a is limited and/or when 
present in the system 
gating the application of 

model order selection for 

 
he first-order cerebrovascular 

k1,CO2

4365



  

nonlinear systems, specifically in the case of Laguerre 
function expansions [17]. 
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