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Abstract— In this work, an algorithm that identifies Ham-
merstein models with support vector machine nonlinearities
and output-error linear dynamics is proposed. This algorithm
is used to identify a Hammerstein model of stretch reflex EMG
dynamics from experimental data.

I. INTRODUCTION

System identification techniques have been used widely

to find mathematical descriptions for physiological systems

from measured input/output data. Since these systems often

contain hard nonlinearities, block structured models, cas-

cades of static nonlinearities and dynamic linear systems,

can be used to represent them [1]. The main advantage

of such models over other nonlinear models is that they

retain much of the simplicity of linear models, but can

nevertheless be used to approximate many nonlinear systems

very accurately. The simplest of these is the Hammerstein

cascade: a memoryless nonlinearity followed by a dynamic

linear element.

The stretch reflex is the involuntary contraction of a

muscle in response to a perturbation of its length. In the case

of the ankle, it can be treated as the dynamic relationship

between the angular velocity of the ankle and the resulting

electromyogram (EMG), measured over the Gactrocnemius-

Soleus (GS) [2]. Kearney and Hunter [3] suggested a Ham-

merstein structure to model such dynamics and showed

that the static nonlinearity resembles a half-wave rectifier.

Afterward, Westwick and Kearney [1] used polynomials to

represent the nonlinearity because they are computationally

easy to use. Nevertheless, they are not suitable to fit hard

nonlinearities. So, Dempsey and Westwick [4] considered

cubic splines, which can represent nonlinearities containing

hard and smooth curves, as the nonlinearity in the Hammer-

stein cascade. However, cubic spline functions are defined

by a series of knot points which must either be chosen a-

priori, or treated as model parameters and included in the

(non-convex) optimization.

Many algorithms have been proposed to identify Hammer-

stein systems. Although the earliest algorithms assumed an

output error model nonlinear structure [5], [6], most recent

algorithms assume that the systems under consideration have

either FIR [1], [4] or ARX [7], [8] linear elements, as

these models are linear in their parameters, which simplifies

their identification. This restricts the plant and noise transfer

functions have common denominators. From a physical point
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of view it may seem more natural to parametrize these trans-

fer functions independently. In which case, an output error

(OE) model would be appropriate. Several techniques have

been suggested to deal with linear OE models; instrumental

variables, repeated least squares, subspace methods, and the

Steiglitz-McBride (S-M) algorithm [9].

Recently, support vector machines (SVMs) and least

squares support vector machines (LS-SVMs) have shown

powerful abilities in approximating linear and nonlinear

functions [10], [11]. They provide much greater flexibility

in modeling nonlinearities than is possible with a fixed basis

expansion. The SVM has additional advantages over the LS-

SVM: sparseness of the solution and robustness to outliers,

but requires increased computational effort. Both SVMs and

LS-SVMs are fit by solving convex optimization problems,

and neither requires a-priori structural information [10].

The main contribution of this paper is to extend the S-

M iterative algorithm to the identification of the output

error Hammerstein models with SVM nonlinearities. This

algorithm will be demonstrated by using it to identify a

model of the stretch reflex EMG dynamics model from

experimental data.

II. IDENTIFICATION OF OUTPUT ERROR MODEL

The Hammerstein output-error system consists of a non-

linear memoryless element followed by a linear output-error

model. The linear dynamics are represented by an output-

error model :















st =
B (z)

A (z)
xt =

∑m
j=0

bjz
−j

1 +
∑n

i=1
aiz−i

xt

yt = st + et =
B (z)

A (z)
xt + et

(1)

where xt, st, yt ∈ R, are the output of the nonlinear

block, the unmeasurable noise-free output, and the measured

output signals, respectively, for t = 1 . . . N . The innovation

et is assumed to be white and z−1 is a shift operator
[

z−1yt = yt−1

]

. The static nonlinearity is assumed to have

the following form:

xt = f (ut) = w
T ϕ (ut) + d0 (2)

where ϕ : R
d
→ R

nH denotes a mapping to high dimensional

feature space which can be infinite dimensional, w is a vector

of weights in this feature space, and d0 represents the bias

term. Then the Hammerstein nonlinear output-error model
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may be expressed as














st =
B (z)

A (z)

(

w
T ϕ (ut) + d0

)

yt = st + et =
B (z)

A (z)

(

w
T ϕ (ut) + d0

)

+ e (t)
(3)

Note that yt is nonlinear function of the parameters bj ,

w, d0, and ai, which makes the identification problem

difficult to solve. Thus, a related overparameterized problem

is proposed by rewriting First, an overparameterized model

is (3) as

yt =
W (z)

A (z)
ϕ (ut) + d + e (t) (4)

where

W (z) =
(

w
T
0 + w

T
1 z−1 + w

T
2 z−2 + · · · + w

T
mz−m

)

wj = bjw, d = d0

∑m
j=0

bj

1 +
∑n

i=1
ai

It is clear that yt is linear in the parameters of the

overparameterized numerator in (4), but this model class is

more general than the Hammerstein model, which it includes

as a special case (when wj = bjw for j = 1..m). The

strategy will be to identify this model first, and then use

a low-rank projection to force the estimated model to be a

Hammerstein cascade [7], [8]. To identify the parameters

of model (3) using SVM regression, solve the following

optimization problem

min
wj ,a,d,ξ

1

2

m
∑

j=0

w
T
j wj +

1

2

n
∑

i=1

a2
i + c

N
∑

t=r

(ξt + ξ∗t ) (5)

subject to

N
∑

t=1

w
T
j ϕ (ut) = 0, j = 0, . . . ,m (6)

y (t) −
W (z)

A(z)
ϕ (ut) + d ≤ ε + ξt

W (z)

A(z)
ϕ (ut) + d − y (t) ≤ ε + ξ∗t

(7)

ξt, ξ
∗

t ≥ 0, t = r, . . . , N (8)

Note that (5) is a standard SVM objective function, con-

sisting of a weighted average, with the weighting controlled

by the parameter c, of the 2 norm of the parameters (w and

a) and the Vapnik ε-insensitive cost function applied to the

residuals. The constraints in (7) are derived by modifying the

constraints of the standard SVM to include the dynamics of

the output error model. From (7), it is evident that errors

smaller than ε, a user selected tuning parameter, do not

contribute to the cost function. Constraints (6) were added to

center the nonlinear functions w
T
j ϕ (·) , j = 0, . . . ,m around

their average over the training set [7], [8]. Unfortunately, the

optimization problem (5)-(8) is not a standard quadratic pro-

gramming problem as is the case when the linear dynamics

are represented by an ARX model [8]. However, one can

carry out the minimization (5)-(8) iteratively. The idea is

to fit a NARX Hammerstein model for the data using the

algorithm proposed in [8] as initial starting point. The result

is a “first estimate” of A(z), B(z), f (ut), denoted A1(z),
B1(z), f1 (ut). Then a S-M inspired iteration is used. Thus

at iteration l, the previous denominator Al−1(z) is used to

pre-filter the input and outputs of the linear part. Then Al(z)
,W l (z) are found by solving the following minimization

min
wj ,al,d,ξ

1

2

m
∑

j=0

w
lT

j w
l
j +

1

2

n
∑

i=1

(

al
i

)2
+ c

N
∑

t=r

(ξt + ξ∗t ) (9)

subject to

N
∑

t=1

w
lT

j ϕ (ut) = 0, j = 0, . . . ,m (10)

Al (z) yf (t) −
W l(z)

Al−1(z)
ϕ (ut) − dl ≤ ε + ξt

W l(z)

Al−1(z)
ϕ (ut) + dl − Al (z) yf (t) ≤ ε + ξ∗t

(11)

ξt, ξ
∗

t ≥ 0, t = r, . . . , N (12)

where yf (t) =
yt

Al−1(z)
. Note that as Al−1 (z) approaches

Al (z) problem (9)-(12) approaches the optimization problem

(5)-(8). Problem (9)-(12) can be solved as follows. First,

write the Lagrangian of (9)-(12)

L
(

w
l
j , d

l, ξ, ξ∗,al;α,α∗,β,β∗,γ
)

= 1

2

m
∑

j=0

w
lT

j w
l
j

+ 1

2

n
∑

i=1

(

al
i

)2
+ c

N
∑

t=r

(ξt + ξ∗t )

−
m
∑

j=0

γj

(

N
∑

t1=1

w
lT

j ϕ (ut1)

)

−
N
∑

t=r

αt( W l(z)

Al−1(z)
ϕ (ut)

+dl − Al (z) yf (t) + ε + ξt)
−

N
∑

t=r

α∗

t(Al (z) yf (t) −
W l(z)

Al−1(z)
ϕ (ut)−

dl + ε + ξ∗t )−
N
∑

t=r

(βtξt + β∗

t ξ∗t )

(13)

where αi, α∗

i , βi, β∗

i are non-negative Lagrange multipliers

and γj ∈ R. Then, the dual problem can be formulated by

finding the stationary point of the Lagrangian (13). Setting
∂L

∂wj

to zero yields

w
l
j = γj

N
∑

t=1

ϕ (ut) +

N
∑

t=r

(αt − α∗

t )

(

1

Al−1(z)
ϕ (ut−j)

)

(14)

One of the key concepts in SVM regression, is the so-

called kernel trick, whereby inner-products of the nonlinear

basis functions are replaced with a kernel [10]. Thus, let

K (ui, uj) = ϕ (ui)
T

ϕ (uj) be the kernel function, and let

K be N × N matrix whose entries are Ki,j = K(ui, uj).
From (14),
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w
lT

j ϕ (utk
) = γj

N
∑

t1=1

ϕT (ut1) ϕ (utk
) +

N
∑

t=r

(αt − α∗

t )

×

(

1

Al−1(z)
ϕT (ut−j)

)

ϕ (utk
)

= γj

N
∑

t1=1

K (ut1 , utk
) (15)

+

N
∑

t1=r

(

αt1 − α∗

t1

)

Kf,0

(

ut1−j
, utk

)

where Kf,0 is the result of filtering each column of the matrix

K with the previous denominator,
1

Al−1(z)
. Similarly, define

K0,f and Kf,f as the results obtained by filtering the rows,

and rows and columns, of K, respectively. Note that the

second equation in (15) involves the kernel, but does not use

the nonlinear basis functions, ϕ.

Similarly from the centering constraints (10), one can

show that

γj

N
∑

t2=1

N
∑

t1=1

K (ut2 , ut1) +

N
∑

t=r

N
∑

t1=1

(

αt1 − α∗

t1

)

×Kf,0 (ut−j , ut1) = 0, j = 0, . . . ,m

(16)

∂L

∂al
i

= 0 ⇒ al
i =

N
∑

t=r

(αt − α∗

t ) yf (t − i) (17)

∂L

∂dl
= 0 ⇒

N
∑

t=r

(αt − α∗

t ) = 0 (18)

∂L

∂ξt

= 0 → αt + βt = c, t = r, . . . , N

∂L

∂ξ∗t
= 0 → α∗

t + β∗

t = c, t = r, . . . , N (19)

From (14)-(19), the Lagrangian function (13) can be

rewritten as

L (α,α∗,γ) = − 1

2

N
∑

t=r

N
∑

t1=r

(αt − α∗

t )
(

αt1 − α∗

t1

)

×

(

m
∑

j=0

Kf,f (ut−j , ut1−j) +
n
∑

i=1

yf (t − i) yf (t1 − i)

)

+ 1

2

m
∑

j=0

γ2
j

N
∑

t=1

N
∑

t1=1

K (ut, ut1)

+
N
∑

t=r

(αt − α∗

t ) yf (t) −
N
∑

t=r

αtε −
N
∑

t=r

α∗

t ε

where Kf,f is defined above. Hence, the dual optimization

problem can be written as

min
α,α∗,γ

1

2

[

γT αT α∗
T
]





−SI 0 0
0 K −K

0 −K K





×





γ

α

α∗



+
[

0 −yT
f (r : N) yT

f (r : N)
]





γ

α

α∗





+
[

0 ε · 1T ε · 1T
]





γ

α

α∗





(20)

subject to
N
∑

t=r

(αt − α∗

t ) = 0

γjS +
N
∑

t=r

(αt − α∗

t ) K0
f (t, j) = 0, j = 0, . . . ,m

0 ≤ α∗

t , αt ≤ c, t = r, . . . , N

with

K (p, q) =
m
∑

j=0

Kf,f (up+r−j−1, uq+r−j−1)

+
n
∑

i=1

yf (q + r − 1 − i) yf (q + r − 1 − i) ,

S =
N
∑

t1=1

N
∑

t2=1

K (ut1 , ut2)

K0
f (t, j) =

N
∑

t1=1

K0,f (ut1 , ut+r−j) ,

K0,f (ut1 , ut) = K (ut1 , ut)
1

Al−1(z)

Then, al
i is given by (17) and dl can be computed based on

the Karush-Kuhn-Tucker (KKT) conditions [10] as follows.

If (αi or α∗

i ) ∈ (0, c) then

dvi = yf (i) −

m
∑

j=0

(γj

N
∑

t=1

K0,f (ut, ui−j)

+

N
∑

t=r

(αt − α∗

t ) Kf,f (ut−j , ui−j))

−

n
∑

h=1

al
hyf (i − h) ± ε (21)

Finally, dl is calculated as

dl =

N−r
∑

i=1

(dvi)

N − r
(22)

A. Separating Numerator and Nonlinearity Parameters

To extract the numerator parameters, we use the solution

presented in [7] and [8], which involves using the SVD

of a m by N matrix to compute the nonlinearity output

and b parameters. Then, using the training input sequence

[u1, . . . , uN ] and the extracted sequence of the nonlinearity

responses, we can train a SVM to represent the nonlinear

part of the Hammerstein system.
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III. ILLUSTRATIVE EXAMPLE

In this section, the algorithm described above will be

applied to the identification of the relationship between the

ankle velocity and the GS-EMG. This problem has been

studied extensively in [1] and [4]. The data were created

as follows: a pulse sequence was used as the reference

input for an electrohydraulic position servo. Then, the ankle

position, the response to the torque produced by the position

servo, and the GS-EMG were measured [3]. The relation-

ship between the ankle velocity, obtained by numerically

differentiating the measured position, and the GS-EMG, was

modeled as a Hammerstein system, and identified from 5
seconds of data, sampled at 200 Hz, which resulted in

1000 input/output measurements. The nonlinear part was

represented by a SVM and the linear part was modeled

by an output error model with n = 2 and m = 0. The

SVM training is controlled by a number of hyper-parameters:

the choice of kernel function and the parameters associated

with that kernel, and the regularization parameter, c. These

values were selected based on cross-validation where we

partitioned the data set into training and validation sets. Then,

different values of the linear model order or one of the hyper

parameters are compared by evaluating their performance on

the validation data while keeping the others fixed [9]. For

example, the regularization parameter c value was chosen

by comparing the performance of the validation data on

values ranged from 10 to 500 while keeping the linear model

order and the other hyper parameters values fixed. The best

model was obtained using an RBF-kernel with σ = 1 and a

regularization parameter c = 7.

Fig. 1 shows the elements of the identified SVM-output

error Hammerstein system. For comparison, Fig. 2 shows

the results obtained using a polynomial and cubic spline

based models together with FIR linear dynamics. As with

the SVM Hammerstein model, these were identified using

1000 data points, and validated on the next 1000 points.

In the validation segment, the polynomial, spline, and SVM

models accounted for 94.6, 94.8, and 95.5 percent of the

output variance, respectively.
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Fig. 1. Elements of the Identified SVM-OE Hammerstein Cascade model
of the Stretch Reflex EMG
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Fig. 2. Identified Hammerstein Cascades of the Stretch Reflex EMG using
separable least squares with polynomial and cubic spline nonlinearities.

IV. CONCLUSION

An identification algorithm for Hammerstein models con-

sisting of a SVM nonlinearity followed by a linear output

error model was developed, and used to construct a model

of the relationship between the ankle angular velocity and the

EMG measured over the GS muscles. The SVM was able to

model a complex nonlinearity, without requiring any a-priori

assumptions regarding its structure. It is clear from the results

that the SVM based approach provides better predictions

of the reflex EMG than the polynomial and cubic spline

based models. Furthermore, the identified nonlinearity does

not contain the negative deflections present in the polynomial

and spline based nonlinearities.
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