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Abstract— The Lempel-Ziv complexity (LZ) has been widely 
used to evaluate the randomness of finite sequences. In general, 
the LZ complexity has been used to determine the complexity 
grade present in biomedical signals. The LZ complexity is not 
able to discern between signals with different amplitude 
variations and similar random components. On the other hand, 
amplitude parameters, as the root mean square (RMS), are not 
able to discern between signals with similar power distributions 
and different random components. In this work, we present a 
novel method to quantify amplitude and complexity variations 
in biomedical signals by means of the computation of the LZ 
coefficient using more than two quantification states, and with 
thresholds fixed and independent of the dynamic range or 
standard deviation of the analyzed signal: the Multistate 
Lempel-Ziv (MLZ) index. Our results indicate that MLZ index 
with few quantification levels only evaluate the complexity 
changes of the signal, with high number of levels, the amplitude 
variations, and with an intermediate number of levels informs 
about both amplitude and complexity variations. The study 
performed in diaphragmatic mechanomyographic signals 
shows that the amplitude variations of this signal are more 
correlated with the respiratory effort than the complexity 
variations. Furthermore, it has been observed that the MLZ 
index with high number of levels practically is not affected by 
the existence of impulsive, sinusoidal, constant and Gaussian 
noises compared with the RMS amplitude parameter. 

I. INTRODUCTION 
HE complexity measure proposed by Lempel and Ziv (LZ) 
[1] has been extensively used in order to evaluate the 
randomness present in finite sequences. Different LZ 

variants have been used in order to: solve information theory 
problems [2], data codification applications [3], and data 
compression without losses purposes [4]. Recently, the LZ has 
been applied to different biomedical signals, such as: 
electrocardiographic signals [5], electroencephalographic signals 
[6]–[8], electromyographic signals [9], intracranial pressure 
signals [10], and mechanomyographic signals (MMG) [11]. 
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To date, the studies performed in biomedical signals only 
try to quantify complexity changes, being far to inform 
about the amplitude variations. In most of these studies, the 
biomedical signal is transformed into a two symbols 
sequence by comparison with a threshold. In some cases the 
threshold corresponds to the median value [6], [7], [9], [10], 
[12], or mean value [5], [8], or modified mean value using 
dispersion parameters of the signal [5]. In few studies, the 
biomedical signal is transformed into a three symbols 
sequence using two thresholds obtained through median and 
dynamic range of the signal [7], [8].  

In order to quantify not only the complexity but also the 
amplitude variations present in the signals, in this work we 
propose to use the LZ coefficient as proposed in [11], i.e., 
with more than two quantification levels, and with 
quantification thresholds that are fixed and independent of 
the dynamic range or standard deviation of the signal. With 
the intention of differentiate between this use of the LZ 
coefficient and the traditional application of the LZ 
coefficient to biomedical signals, we define the parameter 
utilized in this work as the Multistate Lempel-Ziv (MLZ) 
coefficient.  

In [11], the correlation coefficient between MLZ 
complexity parameter obtained in diaphragmatic MMG 
signals and inspiratory pressure parameter was bigger than 
the correlation coefficient between the RMS amplitude 
parameter obtained in the MMG signal (that only evaluates 
the amplitude changes) and inspiratory pressure parameter.  

Also, in studies performed in lung sounds signals (of 
vibratory nature, the same as the MMG signals) [13] and in 
MMG signals [14], the Shannon entropy by means of a 
histogram estimate of the signal was determined. In the same 
way, in these studies fixed and independent thresholds of the 
dynamic range of the corresponding signal were used. Thus, 
the Shannon entropy evaluates amplitude changes of the 
signal as well as changes in the probability density function, 
just as the MLZ coefficient. 

Therefore, the objectives of this study are to analyze the 
MLZ capacity to monitor both complexity and amplitude 
changes in MMG signals, and to compare the MLZ and 
RMS performance in presence of different kind of noises.  

II. METHODOLOGY 

A. Biomedical signals 
The performance of the MLZ coefficient has been tested 

using an example of 30 s of duration of a real diaphragmatic 
MMG signal extracted from a signal database acquired in an 
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animal model (dogs) [14]. In this data base two biomedical 
signals were acquired: the diaphragmatic MMG signal and 
the inspiratory pressure. The dogs performed an inspiratory 
progressive resistive load respiratory test during the 
acquisition. This test was performed with the intention to 
increase the respiratory muscular force performed by the 
dogs. The diaphragmatic MMG signal was acquired with a 
Kistler 8302A capacitive accelerometer placed on the 
surface of the thoracic cage. The placement of the sensor 
was between the seventh and eighth intercostal spaces in the 
anterior axillary line. Inspiratory pressure (Pins) was 
measured with a pressure transducer placed in the trachea. 

All analog signals were amplified, analog filtered, 
digitized with a 12 bit A/D system at a sampling rate of 4 
kHz, and decimated at a new sampling rate (MMG: 200 Hz; 
Pins: 100 Hz). An example of the Pins and diaphragmatic 
MMG signal corresponding to six respiratory cycles (with 
increasing level of respiratory effort) is shown in the first 
two rows of Fig.1. 

B. Multistate Lempel-Ziv coefficient (MLZ) 
The Lempel-Ziv complexity analysis is based on a 

quantification of the signal to be analyzed, i.e., the signal is 
transformed into a sequence of symbols S with β 
quantization levels. Then the number of distinct patterns P 
contained in a given sequence is determinated.         

The sequence S = s(1), s(2),…s(N) is scanned from left to 
right and the complexity counter P is increased by one unit 
every time a new subsequence of consecutive characters is 
found in the scanning process. 

Once the number of distinct patterns P has been found, 
the LZ complexity value of the signal Cβ can be obtained by 
normalizing P in function of the length of the analyzed 
sequence N and the number of quantization levels β [1], 

log ( )P N
C

N
β

β =  

where logβ(N) is the logarithm in base β of N. 

In the two states LZ version, the signal to be analyzed is 
transformed into a 0-1 sequence using as threshold Ud the 
median value [6], [7], [9], [10], [12], or mean value [5], [8], 
or modified mean value using dispersion parameters of the 
signal [5]. In the three states LZ version, the signal is 
transformed into a 0-1-2 sequence using two thresholds Ud1 
and Ud2 that are function of the median and the dynamic 
range of the signal [7], [8]. 

In a similar way, in the β states LZ version (Multistate 
Lempel-Ziv: MLZ), before the MLZ coefficient is 
computed, the signal to be analyzed X must be transformed 
into a 0-1-2,…, β -1 sequence, where β is a integer number 
bigger than three. In this case, the thresholds corresponding 
(Ud1, Ud2,…,UdK, where K=β+1) are conformed as follows: 
1) the median, mean, mode or other central tendency 
parameter of the signal X is estimated (xm), 2) the xm value is 
subtracted to the original signal, i.e., Xm = X – xm , 3) the 
maximum absolute value of the signal Xm is sought out: xabs, 
4) the lower and upper bounds, li = – xabs – c and ls = xabs + c, 
respectively, are fixed, where c is a positive real number, 5) 
K thresholds equally spaced between li and ls are 
determined. Finally, the sequence S is conformed by the 
following rule: 

  
 

 
 
 
 
 

Once the sequence S has been conformed, the MLZ 
complexity is determined by means of the LZ algorithm. If 
K is an odd number, one of the quantification thresholds 
coincides with the central tendency parameter xm, while if K 
is an even number, the xm value is centered between two 
thresholds. For K = 3 and K = 4 quantification levels (β = 2 
and β =3), using appropriates values of xm and c, the MLZ 
coefficient coincides with the standard two and three states 
LZ complexity analysis, respectively. 

In this work the mode value has been proposed to be used 
instead of median or mean value in the conformation of the 
thresholds. The mode value is the most probable value and, 
in this way, maximizes the number of crossings or number 
of state changes produced. In general, for two quantification 
levels the LZ complexity value is maximized when the mode 
value is used. 

C. Signal processing 
A diaphragmatic MMG signal corresponding to six 

respiratory cycles before and after to adding different noise 
components, was analyzed. These noise components of 2 s 
of duration were added in each cycle of the signal and they 
are: a signal composed by zeros, a constant value signal, a 
sinusoidal component signal, a rectangular pulse and 
random component signal.  
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Fig. 1. (a) Inspiratory pressure signal, (b) diaphragmatic MMG signal
without filtering, (c) diaphragmatic MMG signal band-pass filtered 
between 5 Hz and 25 Hz, and (d) RMS of the band-pass filtered MMG
signal using a moving window of 2 s of duration  

s(i) = 

“0”       if   Ud1 < x(i) ≤ Ud2 
“1”       if   Ud2 < x(i) ≤ Ud3                     
           ,   for   i = 1, 2,…, N 
 
“β-1”   if   UdK-1 < x(i) ≤ UdK 

.. .
.. .
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In both signals (before and after noise addition), a band-
pass Butterworth filter with the band frequency of interest in 
MMG signals (lower cutoff frequency of 5 Hz and upper 
cutoff frequency of 25 Hz) was applied, in order to eliminate 
the low frequency component produced by the thoracic cage 
movement during respiration and other biological sound 
sources of higher frequencies (mainly heart sounds) [15]. 

The RMS and MLZ parameters were determined over a 
moving window of 2 s of duration in both signals. The MLZ 
complexity was estimated using 2, 4, 6, 10, 20, 40, 200 and 
1000 quantification levels.  

The relationship among the inspiratory pressure signal 
and both MLZ and RMS parameters determined in MMG 
signals was analyzed by means of the Pearson correlation 
coefficient. 

III. RESULTS 
In Fig. 2 it is shown the evolution of the MLZ index 

determined in the MMG signal before adding the noise 
components, for all the quantification levels. In each case, 
the slope of the lineal regression line (m), the number of 
quantification levels used (Nr) and the normalized Shannon 
entropy value of the Nr distribution (Hn) were computed.  
The waveforms described by 2 (in this case the MLZ 
coincides with the LZ complexity index with two symbols) 
and 4 quantification levels (Fig. 2. a and b, respectively) are 
very similar (with different absolute values due to the 
normalization) and they do not follow a definite pattern. For 
these quantification levels the MLZ coefficient gives only 
information about the complexity measure, and do not 

correlate well with the respiratory activity. With the increase 
of the number of quantification levels the waveform of the 
MLZ is more affected by the amplitude variations of the 
signal. This behavior is observed starting from 10 
quantification levels. With 40 quantification levels all 
respiratory cycles are already perfectly defined. 

Fig. 3 shows on one hand, the results of the correlation 
between Pins signal with: the RMS, and the MLZ parameter 
with 2, 4 and 200 quantification levels determined in the 
MMG signal without noise components added (Fig 3. a, b, c 
and d, respectively). An increment of the correlation index 
when it increases the number of quantification levels of the 
MLZ was observed. In this sense, the correlation value 
reported by MLZ with 200 quantification levels is higher 
than the one reported by the RMS. The lowest correlation 
index was obtained with 2 quantification levels. On the other 
hand, Fig.3 shows also the results of correlation between Pins 
with: the RMS and the MLZ parameter with 2, 4 and 200 
quantification levels, for the MMG signal with noise 
components added (Fig 3. e, f, g and h, respectively). In this 
case, lower correlation coefficients were obtained. However, 
the decrease in the correlation coefficient between the RMS 
and the Pins signal is higher than the decrease produced in 
the correlation index between MLZ with 200 quantification 
levels and Pins signal. 

As an example, Fig. 4 shows the RMS (upper plot) and 
the MLZ (lower plot) with 200 quantification levels 
determined in the MMG signals with and without noise 
addition. It can be seen that the MLZ is less affected by the 
noise than the RMS. 
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Fig. 2. MLZ of the diaphragmatic MMG signal using moving windows of 2 s of duration with 2, 4, 6, 10, 40, 90, 200 and 1000 quantification levels (a, b, c,
d, e, f, g and h, respectively). For each realization it is shown: the slope of the lineal regression line (m), the ratio between the number of utilized 
quantification levels versus the total number of quantification levels (Nr), and the normalized entropy value of the Nr distribution.  
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IV. DISCUSSION AND CONCLUSIONS 
In this work LZ coefficient using more than two 

quantification states with fixed and independent thresholds 
of the dynamic range or standard deviation to the signal 
(Multistate Lempel-Ziv: MLZ) was presented. We have 
observed that the MLZ with 2 quantification levels only 
evaluates complexity (LZ classic method). The MLZ with a 
high number of quantification levels gives information about 
the amplitude changes of the signal. Finally, the MLZ with 
an intermediate number of quantification levels provides 
information about both complexity and amplitude changes.   

The results obtained indicate that the highest correlation 
index was reported between Pins signal and MLZ with 200 
quantification levels. The lowest correlation index was 
reported between Pins signal and MLZ with 2 quantification 
levels, indicating that there is not correlation between Pins 
and the complexity of the MMG signal. On the other hand, 
the correlation index between MLZ coefficient and Pins 
signal was bigger that the correlation index between RMS 
parameter and Pins signal. Furthermore, the RMS parameter 
is more affected by the presence of noise than the MLZ 
coefficient. These results suggest that the MLZ coefficient 
with a high number of states is more robust to noise than the 
RMS parameter. 
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Fig. 3. Correlation plots obtained in diaphragmatic MMG signal without (a, b, c and d) and with (e, f, g and h) noise components added between 
inspiratory pressure and: RMS parameter (a and e), MLZ with 2 (b and f), MZL with 4 (c and g) and MLZ with 200 quantification levels (d and h).  
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