
  

  

Abstract—We undertake the study of the chaotic nature of 

mechanomygraphy (MMG) signal by recourse to the recent 

developments in the field of nonlinear dynamics. The MMG 

signals were measured from biceps brachii muscle of 5 subjects 

during fatigue of isometric contraction at 80% maximal 

voluntary contraction (MVC) level. Deterministic chaotic 

character was detected in all data by using the 

Volterra-Wiener-Korenberg model and noise titration approach. 

The noise limit (NL), which is a power indicator of chaos of 

fatigue MMG signals, is 22.2000 8.7293± . Furthermore, we 

studied the nonlinear dynamic features of MMG signals by 

computing their correlation dimension
2

D , which is 

3.3524 0.3645±  across all the subjects. These results indicate 

that MMG is a high-dimensional chaotic signal and support the 

use of the theory of nonlinear dynamics for the analysis and 

modeling the MMG signals. 

I. INTRODUCTION 

HE EMG signal is the electrical manifestation of the 

neuromuscular activation associated with muscle 

contraction [1], while the mechanomyography (MMG) signal 

records and quantifies the low-frequency lateral oscillations of 

active skeletal muscle, which reflects the “mechanical 

counterpart” of the motor unit electrical activity as measured 

by electromyography (EMG) [2]. It has been recently 

recognized that EMG signal exhibits high-dimensional 

deterministic chaos [3, 4], Therefore, methods of nonlinear 

dynamics (NLD) analysis have been introduced to EMG to get 

a better insight into the complex signal.  

Though the great success has been achieved on nonlinear 

analysis of EMG, the present methods used in MMG analysis 

are most commonly based on the assumption that the signal is 

linear stochastic processes, and the temporal and frequency 

spectrum characteristics were used. For example, the root 

mean square (RMS), the mean frequency, the second-order 

central moment (i.e., the variance of the power spectral 

density), and the normalized third central moment (i.e., the 
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skewness) of MMG signal have been estimated to quantify the 

local muscle fatigue [5-7]. Outtenl et al. applied the burg 

algorithm and three different criteria to extract the MMG 

auto-regressive model coefficients and to characterize the 

MMG-force relationship at different force level [8]. Recently, 

wavelets have also been suggested for analyzing MMG 

signals [9]. Although these techniques do characterize MMG 

signals, perhaps, nonlinear techniques may be needed to 

ascertain the characteristics of these physiological signals, and 

to fully characterize their pattern. To our best knowledge, few 

researchers have so far examined the nonlinear nature of 

MMG, though it is known that MMG presents high 

complexity as EMG. 

Volterra–Wiener–Korenberg (VWK) series approach has 

been developed by Barahona and Poon to detect nonlinearity 

in a time series [10]. Later, numerical titration technique, an 

extension of the VWK algorithm, was given by the group to 

detect and quantify chaos intensity in a chaotic system even if 

the time series is short and noisy in nature [11]. The Gaussian 

kernel algorithm to determine the fractal dimension was 

proposed by Diks and offers several advantaged over earlier 

methods (e.g., Grassberger-Procaccia) [12]. The method is 

technically more complex but is in practice more reliable, 

more robust under the noisy data, and less prone to 

misinterpretation. 

So far, little attention has been paid on the utilization of 

nonlinear dynamics tools to analyze the MMG signals. In this 

paper, some recent developments in the field of NLD (e.g., the 

VWK model [10]; GKA method [12]; the numerical titration 

method [11]) are employed with the aim of detecting and 

locating determinism and nonlinearity in the system governing 

the time behaviour of MMG signals. 

II. METHODOLOGY 

A. MMG data sets 

The MMG signals analyzed in this paper were recorded 

during the voluntary isometric contractions of five healthy 

human subjects. The accelerometer (EGAS-FS-10-VO5, 

Entran Inc, Fairfield, NJ) was fixed on the biceps brachii using 

double adhesive tape. When the experiment began, the subject 

was asked to perform an elbow flexion against the lever arm to 

the 80% of his/her maximal voluntary contraction and 

maintained this value through the visual feedback of the 

torque showed on the screen. The test was stopped when the 

torque dropped to approximately 70% of the MVC, which 

indicates the muscle exhausted. The gain of the MMG signal 

was 5000 with a 5–250 Hz bandwidth. Signals from the sensor 
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were acquired at 500 Hz and stored  

 

in computer. The stationary segment in the fatigue state with 

1000 points was selected for further nonlinear analysis. 

B. Test for Nonlinearity 

The proposed framework for MMG analysis in present 

work consisted of three logical steps. Science nonlinearity is a 

necessary condition for chaoticity, the present step was to 

detect nonlinearity using the VWK model method. The second 

step was to detect chaoticity based on the numerical titration 

procedure. At last, the GKA algorithm was applied to 

determine the correlation dimension for characterizing the 

complex temporal behavior of the chaotic trajectory from 

measured MMG time series data.  

VWK test method is a kind of nonlinear detection of time 

series based on linear and nonlinear Volterra-Wiener- 

Korenberg model. Technically, it first produces the linear and 

nonlinear predicted data from the original time series and 

compares their information criteria to detect the nonlinearity 

of the original data. It is capable of robust and highly sensitive 

to statistical detection of deterministic dynamics, including 

chaotic dynamics, in experimental data set. Assuming that a 

time series is univariate, a discrete VWK series can be 

calculated as follows [10] 
2
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where the memory k and combination degree d correspond to 

the embedding dimension and the degree of nonlinearity of the 

model, respectively. The coefficients 
m

a are recursively 

estimated through a Gram-Schmidt procedure from linear and 

nonlinear autocorrelations of the data itself.  

There is the following information criterion in accordance 

with the parsimony principle: 
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where [1, ]r M∈ is the number of polynomial terms of the 

truncated Volterra expansions from the given pair{ , }k d , 

2( , )k dε is a normalized variance of the error residuals. 

 For each series, the best linear model is determined by 

searching for the lin
k which minimizes ( )C r with 1d = . The 

procedure is repeated with increasing k and 1d > , to achieve 

the best nonlinear mode. This leads to two competing models 

with the corresponding error standard deviations 
lin

orig
ε and 

nl

orig
ε . It indicates that the original series is nonlinear if 1

opt
d > . 

Otherwise, it may be inferred that the original series is not 

chaotic or the chaotic component is too weak to be detected. A 

parametric F-test is applied to  

 

reject the hypothesis that nonlinear modes are not better 

than linear models as one-step-ahead predictors if 
lin

oig
ε >

nl

orig
ε in the statistical sense. 

C. Titration Test for Chaos 

If the null hypothesis is rejected in the above step, namely if 

a nonlinear model best describes the data, the noise titration 

process is applied to detect the chaos in a nonlinear time series. 

White noise of increasing standard deviation ( )δ  is added to 

the time series until its nonlinearity goes undetected (with a 

prescribed level of statistical confidence) by the above 

process. The corresponding amount of noise is called “noise 

limit” (NL). A NL above zero indicates the presence of chaos 

and provides an estimate of its intensity within the 

experimental time series [11]. Conversely if NL=0 

nonlinearity is not detected. This can mean that the time series 

is not chaotic or that the chaotic component of the signal is 

already neutralized by the background noise in the data [11]. 

The condition NL>0 therefore provides a simple sufficient 

case for chaos. 

 

D. Estimation for Correlation Dimension 

The Gaussian kernel algorithm to determine the correlation 

dimension is a generalized form of GP algorithm and offers 

several advantages over GP method. It is specifically useful 

for the noisy time series and works well for different noise 

sources. In a representative trial, the Lorenz system was added 

by different types of independent and identically distributed 

(IID) noise, i.e., Gaussian, uniform, and a combination of the 

Gaussian with uniform noise. The method could accurately 

capture the underlying correlation dimension of the system 

even for pure Gaussian IID noise up to 50% (noise level), pure 

uniform IID noise to 20%, and combined noise to 40% [12]. 

Therefore, the present work relies on the GKA method. 

III. RESULTS 

An illustration of a typical raw MMG signal of subject 2 is 

shown in Fig.1 and its phase space reconstruction was 

obtained as shown in Fig. 2 

The VWK model method has been applied to the MMG 

sequences to test the nonlinearity. In all the subjects, ( )C r vs. 

number of terms r have been analyzed for both linear and 

nonlinear models for varying parameters k  and d .  

In all the cases, the null hypothesis of linearity was rejected 

using F-test. The finding indicated that the analyzed MMG 

signals were all nonlinear. ( )C r vs. r plots for the MMG 

signal shown in Fig. 1 has been depicted in Fig. 3. The plots 

for other subjects were similar, i.e., ( )
lin

orig
C r  is significantly 
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higher than ( )
nl

orig
C r . The results showed that, for MMG 

signals, the nonlinear model would be more predictive than 

the linear model.  
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Fig. 1.  Typical raw MMG signal recorded at Biceps from 

subject 2. 
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Fig. 2.  Attractor of MMG signal, obtained by phase 

reconstruction of typical raw MMG signal. 

 

Nonlinearity has been detected in MMG signals of all 

subjects. Next, according to the chaotic titration method, we 

add the white noise to MMG signal till the VWK nonlinear 

identification method could not detect the nonlinear dynamics. 

Titration on each of the MMG signal has been performed with 

an increment of 1% noise at every step. Fig. 4 show 

( )C r vs. r plots for the MMG signal shown in Fig. 1  for 9%,  

18%, and 27% noise additions, respectively. The highest of 

these noise limit values obtained in each subject are listed in 

Table. 1. Clearly, the noise limit yielded by the noise titration 

procedure for each data set was above zero which depicted a 

sufficient condition for chaos in the fatigue MMG signals. As 

mentioned in Section 2, since GKA method overcomes many 

of the intractable problems posed by GP algorithms, it is used 

to determine the correlation dimension of the MMG signals. 
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Fig. 3.  Linear and nonlinear model fits using the 

Volterra-Wiener-Korenberg series for the MMG signal. 
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Fig. 4.  ( )C r vs. r plots for the MMG signal when added 

noise is (a) 9%, (b) 18%, and (c) 27% (noise limit). 

 

Fig. 7 shows the plot of correlation dimension vs. varying 

embedding dimension based on the segment of the MMG data 

taken form the subject 2. With increasing the embedding 

dimension m , the correlation dimension 
2

D first 
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embedding dimension m , the correlation dimension 
2

D first 

rises and saturates at embedding dimension of 7, and 

thereafter slightly fluctuated. The average value and 

corresponding standard deviation were obtained 

over 7 20m = − , giving
2

3.8428 0.2310D = ± . The results of 

the correlation dimension estimation of the other subjects 

were similar, and the mean and standard deviation  

 

of 
2

D  across 5 subjects were 3.3524 and 0.3645, respectively. 

This measurement indicated the mechanical activity of the 

muscle within this segment of MMG can be described by 

3 4−  active degrees of freedom. Hence, the dynamical 

behavior of the muscle’s mechanical activity is mostly likely 

to originate from the high-dimensional chaos. 
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Fig. 5.  The measurement of correlation dimension 

2
D  as a 

function of embedding dimension m  

 
TABLE I 

THE NOISE LIMIT VALUES FOUND BY USING THE NOISE 

TITRATION PROCEDURE IN THE 5 SUBJECTS. 

subjects Noise level (%) k d 

1 16 6 4 

2 27 6 4 

3 12 6 4 

4 34 6 4,5 

5 22 6 5 

Mean 22.2000   

S.D. 8.7293   

 

IV. CONCLUSIONS 

In the course of muscle contraction, there is strong 

electromechanical coupling in the motor system. The EMG 

signal reflects the generation, propagation and extinction of 

motor unit action potentials. In the meantime, the electrical 

impulses (spikes) of the motor system are converted to 

mechanical “ripples” (twitch contractions) of the related 

motor unit, which are connected to innervating motor neurons 

via neuromuscular junctions. This mechanism leads to motor 

unit recruitment, firing pattern, and/or synchronization are 

reflected in both the EMG and the MMG signals [2]. Previous 

studies of Nieminen and Takala [3] have noted the EMG 

signals were a chaotic signal based on the modeling study of 

biceps brachii during isometric contraction. However, little 

attention has been given to the nonlinear structure of another 

outcome of muscle contraction. In the present study, the 

positive value of noise limit, as shown in Table. 1 and the 

correlation dimension from 2.9476 to 3.8428 were indicators 

that MMG signals in fatigue state of all observed subjects 

were a chaotic signal, and were generated by nonlinear 

dynamics systems.  Our results advocate the use of the theory 

of nonlinear dynamics for the analysis and modeling of the 

MMG. 

ACKNOWLEDGMENT 

 

  This work is partially supported by the Hong Kong 

Research Grant Council (PolyU 5331/06E), The Hong Kong 

Polytechnic Unversity (1-BB69), and Jiangsu University, 

PRC (07JDG40). 

REFERENCES 

[1] M. Paloheimo, “Quantitative surface electromyography (qEMG): 

applications in anaesthesiology and critical care,” Acta Anaesthesiol. 

Scand. Suppl., vol. 93, pp. 1–83, 1990. 

[2] C. Orizio, “Muscle sound: bases for the introduction of a 

mechanomyographic signal in muscle studies,” Crit. Rev. Biomed. 

Eng., vol. 21, pp. 201–243, 1993. 

[3] H. Nieminen and E. P. Takala, “Evidence of deterministic chaos in the 

myoelectric signal,” Electromyogr. Clinical. Neurophysiol., vol. 36, 

pp. 49–58, 1996. 

[4] Y.W. Swie, K. Sakamoto, and Y. Shimizu, “Chaotic analysis of 

electromyography signal at low back and lower limb muscles during 

forward bending posture,” Electromyogr. Clin. Neurophysiol., vol. 45, 

pp. 329–342, 2005. 

[5] Y. Itoh, K. Akataki, K. Mita, M. Watakabe, and K. Itoh, 

“Time-frequency analysis of mechanomyo- gram during sustained 

contractions with muscle fatigue,” Systems and Computers in Japan, 

vol. 35, pp. 26–36, 2004. 

[6] F. Esposito, C. Orizio, and A. Veicsteinas, “Electromyogram and 

mechanomyogram changes in fresh and fatigued muscle during 

sustained contraction in men,” European journal of applied 

physiology and occupational physiology, vol. 78, pp. 494–501, 1998. 

[7] P. Madeleine, H.Y. Ge, A. Jaskólska, D. Farina, A. Jaskólski, and L. 

Arendt-Nielsen, “Spectral moments of mechanomyographic signals 

recorded with accelerometer and microphone during sustained 

fatiguing contractions,” Med Biol Eng Comput. vol. 44, pp. 290–297, 

2006. 

[8] A. G. Outtenl, S J. Roberts, and M J. Stokes, “Analysis of human 

muscle activity,” IEE Colloquium on Artificial Intelligence Methods 

for Biomedical Data Processing London. pp. 1–7, 2006. 

[9] T.W. Beck, V. Tscharner, T.J. Housh, J.T. Cramer, J.P. Weir, M.H. 

Malek, and M. Mielke, “Time/frequency events of surface 

mechanomyographic signals resolved by nonlinearly scaled wavelets,”. 

Biomedical Signal Processing and Control, vol. 3, pp. 255–266, 

2008. 

[10] M. Barahona and C.S. Poon, “Detection of nonlinear dynamics in 

short, noisy time series,” Nature, vol. 381, pp. 215–217, 1996. 

[11] C.S. Poon and M. Barahona, “Titration of chaos with added noise,” 

Proceedings of the National Academy of Sciences, vol. 98, pp. 

7107–7012, 2001. 

[12] D. Yu, M. Small, R.G. Harrison, and C. Diks, “Efficient 

implementation of the Gaussian kernel algorithm in estimating 

invariants and noise level from noisy time series data,” Phys. Rev. E., 

vol. 61, pp. 3750 –3756, 2000. 

4382


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

