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Abstract— Cardiac MRI performed while the patient is
breathing is typically achieved using non-real-time techniques
such as ECG triggering with respiratory gating; however,
modern dynamic imaging techniques are beginning to enable
this type of imaging in real-time. One of these dynamic imaging
techniques is based on forming a Partially Separable Function
(PSF) model of the data, but the model fitting process is known
to be sensitive even when truncated SVD regularization is used.
As a result, physiologically meaningless artifacts can appear in
the dynamic images when the total number of measurements is
limited. To address this issue, the dynamic imaging problem is
formulated as a generalized Tikhonov regularization problem
with the PSF model as a component of the forward data model,
and a penalty function is used to introduce spatial-spectral prior
information. This new method both reduces data acquisition
requirements and improves stability relative to the original PSF
based method when applied to cardiac MRI.

INTRODUCTION

The vast majority of Cardiac Magnetic Resonance (CMR)

is performed using non-real-time techniques based on ei-

ther prospective or retrospective processing of physiological

signals such as using the ECG to synchronize MRI data

acquisition with the cardiac phases, but real-time CMR at

high spatial resolution has long been a goal of the field. CMR

has experienced significant progress over the past 10 years

largely due to the introduction of parallel imaging, and its use

is now commonplace in clinical CMR [1], [2], [3]. Parallel

imaging not only speeds up non-real-time CMR but has made

it possible to achieve real-time MRI with acceptable spatial

resolution in many two dimensional CMR scenarios [1], [3].

Another contributor to real-time CMR research is known

as dynamic imaging. Dynamic imaging in MRI is funda-

mentally concerned with reconstructing real-time movies of

patients that are sampled insufficiently in the (k, t)-space [4].

UNFOLD and k-t SENSE are the most well known examples

of the dozens of dynamic imaging algorithms that are well

suited to CMR. These methods make use of redundancies in

the data to improve the imaging speed of MRI [5], [6].

Unfortunately, all acceleration techniques for MRI can

only be pushed so far until image artifacts destroy the

reconstructions, and each method has its own unique limi-

tations. For example in CMR, partial Fourier methods are

prone to reduced spatial resolution and ringing artifacts;

segmented acquisitions can result in temporal blurring; EPI

suffers from spatial blurring; parallel imaging is limited
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by spatial aliasing and noise amplification; and dynamic

imaging reconstructions are degraded by motion artifacts.

The artifacts of dynamic imaging are the ones addressed in

this paper.

An important feature of most motion artifacts in CMR is

that they are relatively obvious when viewed by someone

with a background in cardiac physiology. For instance, the

boundary of the patient’s body can often be determined

despite image artifacts, so artifacts that extend outside the

body can often be easily identified. Also, motion artifacts

can appear in areas of low signal intensity such as the lungs

or in static regions such as near the spine. Another example

is when replicas of cardiac structures appear superimposed

on other organs that are known to have much simpler spa-

tiotemporal characteristics. Such an artifact may be obvious

to a radiologist or physician even though its existence may

render the images diagnostically useless.

Unfortunately, not all of the recently developed techniques

for dynamic imaging provide a way to incorporate practical

physiological information such as: 1) the heart is inside

the body, 2) the heart is roughly within a certain spatial

range, and 3) some tissues are more static than others. The

main purpose of this paper is to enable this capability while

taking advantage of a recently developed method based on

the Partially Separable Function (PSF) model [7].

The potential of dynamic imaging using the PSF model has

been demonstrated recently by developing a technique based

on it to perform real-time CMR in breathing rats [8]. Not

only are the spatio-temporal requirements very high for rat

CMR, but the breathing motion introduces complexity into

the spectral content of the raw data. The PSF method works

in many cases, but sometimes it is very sensitive to the model

fitting resulting in image artifacts. Reducing these artifacts

would improve the practical usefulness of this method of

CMR.

Also, there is a need to push to even higher spatial

resolutions toward the goal of three dimensional, real-time

CMR. The PSF model based method can already be used for

2D CMR with sparse sampling along the time dimension,

but even less data are available for each k-space location in

the three dimensional case (for a fixed MRI scan time). The

authors propose a new method that addresses the stability of

dynamic imaging using the PSF model as well as reduces its

data acquisition requirements by reformulating the problem

so that prior spatial-spectral information about the patient

can be incorporated into the dynamic image reconstruction

procedure.

This paper first introduces the theory of the new method
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along with its closed form solution. A simulation created

to demonstrate the method is then described and followed

by dynamic imaging reconstruction results. These results are

discussed along with the usefulness of the proposed method,

and the paper ends with the conclusion and references.

THEORY

Recent work in the theory of Partially Separable Functions

(PSF) has shown that it is possible to accelerate dynamic

imaging to high levels of performance by allowing sparse

temporal sampling [7]. In the PSF model based approach

the (k, t)-space signal, s, is modeled as

s(k, t) =

L
∑

ℓ=1

cℓ(k)ϕℓ(t) (1)

where {ϕℓ(t)} are basis functions estimated from measured

data, and {cℓ(k)} are the unknowns of the model. The

dynamic images are found by fitting the model to the

measured data by solving

argmin
{cℓ(k)}L
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(2)

at each point in the k-space using an energy constraint on

{cℓ(k)} such as truncated SVD. Solving (2) will be referred

to as applying the existing PSF based imaging method in the

remainder of the paper.

It is unclear how to constrain the existing method to

avoid physiologically incorrect reconstructions. To make

this constraint possible, the dynamic imaging problem has

been formulated as a generalized Tikhonov regularization

problem [9], [10]

argmin
a

||s − Ea||22 + λ2||W (a − a0)||
2
2 (3)

where s contains the measured (k, t)-space data for all coils

(with a noise covariance Ψ), and E is the forward data model

for the underlying unknowns describing the object, a. λ2

is known as the regularization parameter. a0 is an initial

estimate of the unknowns, and W is a weighting matrix.

The first term in the optimization problem encourages the

solution to predict the measured data, while the second term

penalizes undesirable solutions. In general, problems of this

mathematical form have the solution

a∗ = a0+(EHΨ−1E+λ2WHW )−1EHΨ−1(s−Ea0). (4)

The Partially Separable Function (PSF) model is incorpo-

rated by defining the general forward data model

E = UF̃ySΦ (5)

where Φ is a matrix of the PSF temporal basis functions

whose product with a gives a vector containing the (y, t)-
space reconstruction. S represents the time-varying coil

sensitivities. F̃y transforms its input to the (k, t)-space with

the options to window the discretized spatial domain data,

represent the object using an arbitrary basis such as a pixel

basis, account for magnetic field inhomogeneities, and allow

TR

∆ky

t

ky

N th Data Frame
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Fig. 1. The k-t sampling pattern used for phase encoding where the readout
direction is into the page. The open circles represent the training data, and
the filled circles represent the (k, t)-space sparse samples.

for arbitrary k-space trajectories. U is the sampling operator

that retains only those data actually acquired in the (k, t)-
space.

Prior spatial-spectral information is incorporated into the

imaging method by defining the W operator as

W = PFtΦ (6)

where Ft is a Fourier transform over the time domain, and

the entries of P define a spatial-spectral penalty to discourage

energy from being assigned to certain (y, f)-space locations

thereby reducing physiologically meaningless artifacts as

well as the data acquisition requirements.

METHODS

Experimental Conditions

All experimental data in this paper were collected using a

Bruker (Billerica, MA) Avance DRX 4.7 T, 40 cm equipped

with a 12 cm, 40 G/cm shielded gradient set. A 5.5 cm

custom built surface coil was used for the collections. A

FLASH pulse sequence was used to acquire an ECG trig-

gered, respiratory gated set of cardiac images at 256 x 256

resolution over a 5 x 5 cm Field of View (FOV) with a 2

mm slice thickness.

The animals used in the study were the same type of Dark-

Agouti and Brown Norway rats as in reference [11]. All

animals received humane care in compliance with the Guide

for the Care and Use of Laboratory Animals, published by

the National Institutes of Health, and the animal protocol

was approved by the Carnegie Mellon University Institutional

Animal Care and Use Committee.

Simulation

A single channel cardiac phantom was created using

denoised images from the gated acquisition. The phantom

was time sequentially sampled using phase encoding with

the sampling pattern shown in Figure 1 over a time duration

of 15 sec with a TR of 3 msec.
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The data were then reconstructed using (2) as well as (3).

The definition of P used in (4) was (I − Ω) where I is the

identity matrix, and Ω is a diagonal matrix formed from an

indicator function defining the Region of Support (ROS) in

the (y, f)-space. Ω has a value of 1 when significant energy is

present and 0 when it is not, so P penalizes only those (y, f)-
space locations outside the ROS. Ω was chosen to be a coarse

approximation to the true ROS that forms a cross shape over

the heart [5]. Ω was given a value of 1 over a range of y

locations containing the heart, while other spatial locations

were assigned a value of 1 only near the DC frequency, and

Ω was kept constant over all x locations. λ2 = 10−7 was

used, and a0 was set equal to zero. Because phase encoding

was used, the reconstruction problem was solved at each

x location separately. This means that a contains the PSF

model coefficients for all y locations at each particular x.

RESULTS

The reconstruction in Figure 2 (a) shows a single image

of the dynamic reconstruction using the existing PSF based

method. The vertical streaking artifacts are in the phase

encoding direction, and they corrupt the heart region sig-

nificantly enough to render the image diagnostically useless.

These artifacts are eliminated when the proposed method

is applied to exactly the same acquired data as shown in

Figure 2 (b).

Another view of the artifacts is shown in Figure 3 by

plotting a column of pixels passing through the heart (vertical

axis) as a function of time (horizontal axis). Figures 3 (a) and

(b) show the reconstruction results of the existing PSF based

method and the proposed method respectively. The proposed

method’s reconstruction has a peak error of 7% and is nearly

indistinguishable from the gold standard.

DISCUSSION

One interesting result in Figure 3 (b) is that these simula-

tion results demonstrate typical artifacts of the existing PSF

model fitting when it is pushed to its performance limits.

The reconstruction artifacts take on a character that appears

much like time-varying noise, and some image frames are

close to the true image while others are unintelligible. The

artifacts corrupt regions of the image with and without signal

from the body; however, the spatial-spectral penalty in the

proposed method can largely eliminate these artifacts.

Another key point is that the proposed method reduces

the number of measurements needed to reconstruct images

with an allowable amount of error when compared to the

existing PSF based method. This reduction in the number of

measurements is equivalent to a speed improvement, so in

the proposed method, the data acquisition resources can then

be allocated to either increase the spatial resolution or reduce

the scan time as appropriate for the specific application.

The proposed method has significant differences with

other popular methods for CMR. It makes a very different

use of the (y, f)-space ROS concept when compared to

UNFOLD, TSENSE, UNFOLD-SENSE, PARADIGM, and

PARADISE [5], [12], [13], [14], [15], [16]. Those methods

(a)

(b)

Fig. 2. Comparison of simulated reconstruction (a) existing PSF method
and (b) proposed method with spatial-spectral prior information.

rely on specialized sampling patterns, U , that manipulate

the (y, f)-space aliasing to pack the ROS. In these methods

the ROS is a well defined region that is explicitly extracted

using a linear filter, but the proposed method imposes the

ROS in a soft fashion making it robust to errors in the

ROS estimate. Also, spatial-spectral overlap is allowed in

these other methods only when parallel imaging is used. In

contrast, the PSF model can be used to overcome significant

spatial-spectral aliasing even without parallel imaging and is

considerably less dependent upon the choice of an optimal

sampling pattern.

The proposed method’s use of prior information is concep-

tually similar to k-t SENSE [6]; however, the direct extension

of that method to take advantage of the PSF model is to use
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(a)

(b)

Fig. 3. Comparison of simulation results for the (y, t)-space of a column
of pixels through the heart: (a) existing PSF based method, and (b) proposed
method with prior spatial-spectral information.

a magnitude estimate of the PSF model coefficients to con-

strain the solution [17]. The spatial-spectral penalty used here

has some practical advantages since it has a very biological

interpretation and can therefore be used to constrain dynamic

motion to be within the patient’s body, cardiac motion to

be localized to the heart region, eliminate energy from air

cavities inside the body, and discourage dynamic content

from appearing in static tissues. In contrast, the coefficient

magnitudes rarely have a physiologically meaningful inter-

pretation since the temporal basis functions from the PSF

model are purely mathematical constructions, so the only

practical refinement to further constrain the reconstructed

images is to set coefficients for selected spatial locations to

zero. An important final note in this comparison is that even

though the prior information in this demonstration has been

manually defined, it can also be automatically derived from

training data.

The proposed method also differs from Compressed Sens-

ing (CS) inspired methods for dynamic imaging such as k-

t FOCUSS, k-t SPARSE, and others [18], [19], [20]. CS

assumes that the sparse basis is independent of the patient,

while the PSF model’s basis is patient specific. The proposed

method is similar to already knowing the locations of the

non-zero temporal basis coefficients in CS, so some reduction

in the number of measurements may be possible.

CONCLUSION

A new method of dynamic imaging has been proposed for

use in real-time CMR. The formulation solves the problem

using generalized Tikhonov regularization and jointly uses

the PSF model, parallel imaging, and spatial-spectral prior

information to both reduce data acquisition requirements and

improve stability over existing PSF model based methods.

The results in this paper have demonstrated the potential

usefulness of prior spatial-spectral information combined

with the PSF model, and this new approach to dynamic

imaging may find applicability in real-time Cardiac MRI as

well as other real-time imaging scenarios.
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