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Abstract— MRI myocardial perfusion analysis is an impor-
tant element for the ischemic heart disorder assessment. The
spatio-temporal analysis of the myocardial raising during the
first crossing of a contrast bolus allows to identify the ischemic
or hypoperfused areas. Such an analysis requires an accurate
tracking of the myocardium on the whole sequence and a
robust segmentation to identify pathological and healthy regions
inside the myocardium. In this paper, we present a semi-
automatic tracking tool and a segmentation algorithm based
on statistical tests and a recent concentration theorem. We
show experimental results for both the tracking step and the
segmentation of hypoperfused areas to confirm the availability
of this setting.

I. INTRODUCTION

The analysis of myocardial perfusion constitutes a key
element in the evaluation of cardiac diseases. In this context,
perfusion MRI (p-MRI) has emerged as a primordial clinical
investigation tool thanks to its non invasive property. In
order to obtain an accurate quantification of hypoperfused or
ischemic regions, a spatio-temporal analysis of the intensity
repartition inside the myocardium during the first transit of
a contrast agent (Gadolinium) is needed. Such an analysis
requires an accurate tracking of the cardiac structures all
along the sequence. In this paper, we propose a tracking
algorithm based on elastic deformations of parametric curves
and an algorithm dedicated to the segmentation of hypoper-
fused regions inside the myocardium using a region-merging
method. This work1 constitutes a part of a larger project
whose goal is to quantify the spatio-temporal repartition of
the image intensity in the myocardium.

The main difficulty for the segmentation of cardiac struc-
tures in p-MRI sequences lies in the fact that the different
regions (myocardium, left ventricle) are not homogeneous
and encounter strong variations of intensity due to the transit
of the contrast agent. Besides, even if the images are taken at
instants corresponding to the same phase of the cardiac cycle,
a registration is needed due to the patient breathing [11]. The
registration is classically performed on the whole image [2].
Instead of a registration of the whole frame, we rather track
the contours of the cardiac structures along the sequence as
in [4]. We propose to design a fast and robust affine registra-
tion of the regions based on a local motion estimation. Such
a tracking algorithm is followed by an accurate delineation
of myocardial hypoperfused regions using a region merging

1This work is funded by a grant cofinanced by General Electric Healthcare
and the Region Basse Normandie. Images from this paper come from the
radiology service of the CHU of Caen (Normandy, France).

algorithm. Our aim is to obtain a spatio-temporal delineation
of the hypoperfused regions which will give more precise
information than usual spatio-temporal mean intensity curves
computed on the 17-segments LV model from the American
Heart Association [1]. The tracking part is realized in two
main steps: (i) we perform a local motion estimation based
on a block matching method inspired from recent video
compression standards [12] and (ii) from this local motion
estimation, we deduce the affine transformation parameters
of both the epicardium and the endocardium contours. In
order to accurately identify the hypoperfused regions inside
the myocardium, a region merging algorithm based on a
graph representation is used. Such methods require both
the design of a merging predicate in order to decide if
the two selected regions must be merged or not and the
design of a merging order to iteratively select couples of
regions that must be tested by our predicate. As far as the
merging predicate is concerned, we propose a new predicate
especially designed for the segmentation of small regions
in noisy images and computed on the basis of a contrario
approaches [3] and recent statistical inequalities [8].

The paper is organized as follows. The tracking algorithm
is detailed in section II while section III presents our region
merging segmentation algorithm. Experimental results on
real p-MRI sequences are given in section IV.

II. TRACKING

The aim of this first part is to provide a robust and com-
putationally efficient tracking algorithm of the myocardium.
From an initial segmentation (performed manually by an ex-
pert or using region-based active contours [7]), the principle
is to perform an elastic deformation of the contours of the
myocardium in order to track this structure throughout the
whole sequence. The contours are modelled using Bézier
curves with a given number of control points, and deformed
from one frame to another using a global affine parametric
model. Such a model represents a good trade-off between
complexity of estimation and representativity. The six param-
eters of this transformation are estimated in two main steps :
first, we estimate motion vectors using an improved block
matching algorithm explained in section II-A and then, we
deduce from this local motion estimation the parameters of
the global transformation which minimize an energy criterion
(section II-B). The affine transformation is then applied to
the control points of the curves in order to segment the
myocardium in the next frame. This algorithm allows a
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robust and efficient segmentation at a low computational
cost and seems well suited for p-MRI perfusion where
deformations of the myocardium are mostly due to patient
breath.

A. Local motion estimation

Local motion estimation between two successive images is
performed using a block-matching algorithm which includes
blocks of variable sizes as in [12] and a robust similarity
criterion invariant to affine variations of intensities. Indeed,
the similarity criterion between two blocks must be chosen so
as to compensate the variation of intensities inside the cardiac
regions (myocardium and left ventricle) due to the transit of
the contrast agent. In order to find the displacement d(p) of
the pixel p, we minimize the ZNSSD (Zero-mean Normalized
Sum of squared Differences) criterion defined as follows:

ZNSSD(d) =
1
|B|

∑
p∈B

[
It (p)− It (B)−

(
It+1(p+d)− It+1(B+d)

)]2

√
∑
p∈B

(
It (p)− It (B)

)2

∑
p∈B

(
It+1(p+d)− It+1(B+d)

)2
(1)

where B designates a block of size |B|, I(p) the intensity
value at p = (x,y)T , I(B) the mean of intensities inside B
and d(p) = (dx(p),dy(p))T the displacement of the pixel p.
This criterion presents the advantage to be invariant to affine
variations of intensities between two blocks.

Blocks are usually defined by dividing the image frame
into non-overlapping square parts. In this work, in order to
improve the accuracy of motion estimation, we authorize
variable sizes of blocks as in advanced encoding schemes
(e.g. H264, MPEG-4 AVC). If the ZNSSD of a block is
greater than a threshold α and if the sum of the gradients
along the x-axis Sx = 1

|B| ∑p∈B |∇xI(p)| is greater than a
threshold β , we split the block in two vertical sub blocks of
equal size. In the same way, the block is split horizontally
if its ZNSSD is above α and the sum of gradients along the
y-axis Sy is greater than the threshold β .

B. Global motion computation

We assume that cardiac structures undergo a parametric
transformation T from one frame to another. We then search
for the parameters of the transformation which minimize the
following criterion:

E(T) = ∑
p∈ΩI

ϕ(||d(p)−T(p)||)

where d represents the motion vector estimated using the
block matching algorithm detailed above and ΩI the image
domain. In the Bayesian framework, the function ϕ is known
as the potential function and can be used to remove outliers.
In a first step, the function ϕ is chosen as ϕ(r) = r2, in order
to guarantee the uniqueness of the solution. As far as the
transformation T is concerned, we choose a six parameters
affine model.

The estimated parametric transformation T is applied to
each control point of the Bézier curves performing in this
way an elastic deformation of the cardiac structures from
one frame to another.

III. HYPOPERFUSED REGION SEGMENTATION

In order to quantify the perfusion, medical experts usually
separate the myocardium in segments using the 3 SA-levels,
17-segments LV model recommended by the American Heart
Association (AHA)[1], this method is used for example
by [4] for quantification purposes.

In this part, we propose a segmentation tool that allows
to accurately delineate the hypoperfused region inside the
myocardium and then its precise repartition in the different
segments and the corresponding myocardial hypoperfused
ratio. We propose in this work to segment hypoperfused
regions using a region merging algorithm based on sig-
nificance tests and on the recent statistical inequality of
McDiarmid [8]. Our algorithm can be seen as an extension
of the work proposed in [10] with an improved merging
order. As in [5], we also propose to define it using a
contrario principles.

A. Problem statement

Due to the random part in image acquisition systems,
an image I is classically considered as an observation of
a perfect statistical image I∗. Using such an image model,
an ideal region is defined as a vector X = (X1, . . . ,Xn) of n
random variables representing the pixel intensities. A “real”
region is then considered as an observation of this random
vector which takes its values in ∏

n
k=1 Ak. In natural images,

the set of admissible values Ak usually corresponds to [0;M]
where M = 255. However, in medical images (e.g.: MRI,
Echography), the set Ak may be larger.

Segmentation using a region merging algorithm is real-
ized through the definition a merging predicate P(Xi,X j) a
merging order. The design of these two points is crucial for
segmentation purposes. Let us now introduce our general
framework to compute such merging predicates based on a
contrario approaches and recent statistical inequalities. The
merging order (given in section III-E) will be deduced from
the merging predicate.

B. Problem statement using a contrario approaches

Given two statistical regions X1 and X2 and a dissimilarity
criterion d(., .), let us consider two observations R1 and R2 of
respectively X1 and X2 and the event E: the observed value
d(R1,R2) of the statistic d(X1,X2) is greater than a threshold
T . The a contrario approach is based on the estimation of
the probability of this event under the similarity hypothesis
H0. Let us consider an upper bound δ of this probability:

P{d(X1,X2)≥ T |H0} ≤ δ (2)

We can remark that the probability δ and the threshold T are
dependent. Indeed if the threshold T is set to a high value,
this corresponds to a non probable event under H0 and δ

should then be small. On the contrary if the threshold T is
set to a small value, this corresponds to a probable event
under H0 and so δ must be large. Usually, one may assume
that the threshold T is a decreasing function of δ which may
be denoted as T (δ ).
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Using the a contrario approach, if we take δ as a low
probability value, the event E is considered as not probable
under the similarity hypothesis H0 and this hypothesis is then
rejected. Our decision rule for region merging is then defined
as:

if d(R1,R2)≥ T (δ ) then H0 is rejected (3)

and then R1 and R2 are observations of two distinct statistical
regions X1 and X2 and must not be merged.

C. Thresholds computation using concentration inequalities

The main difficulty of the above approach lies in the
computation of the threshold T (δ ). In this work, we propose
to use the extension of the McDiarmid theorem [8] which
allows to bound the probability of a large class of events.
Let us remind this theorem:

Theorem 3.1: Let Y = (Y1, . . . ,Yn) be a family of random
variables with Yk taking values in a set Ak, and let f be a
bounded real-valued function defined on Ω = ∏

n
k=1 Ak. If µ

denotes the expectation of f (Y) we have for any α ≥ µ:

P{ f (Y)≥ α} ≤ exp
(
−2(α−µ)2

r2

)
+P{Y ∈C} (4)

Where C is a subset of Ω and r2 is the maximal sum of
squared range defined on C = Ω−C.

The set C in the above theorem corresponds to a set of
outliers for Y. Within our framework, we define f (Y ) as
our dissimilarity measure d(X1,X2) and Y as an appropriate
combination of the two vectors X1 and X2.

Let us denote by ∆(α), the probabilistic bound given by
the McDiarmid’s theorem:

P{ f (Y)≥ α} ≤ ∆(α) (5)

The threshold T (δ ) introduced in (2) can then be estimated
by setting δ = ∆(α) and so α = ∆−1(δ ).

D. Piecewise constant predicate

We measure the similarity between the two regions by the
following dissimilarity measure:

f (X) = d(X1,X2) = |U1−U2| (6)

where {U j} j=1;2 denote the random variables corresponding
to the means of the statistical regions {X j} j=1;2 of associated
sizes |X j| .

Our goal is to compute a decision rule that indicates if
two observations R1 and R2 of X1 and X2 are similar or
not. According to our approach, we have to upper bound
the probability that the function f (X) = d(X1,X2) is greater
than a given threshold α12 using the McDiarmid’s theorem
(theorem 3.1). Such an upper bound is provided by the
following proposition:

Proposition 3.1: Using the previously defined notations,
we have for any couple (X1,X2) of statistical similar regions
and any threshold α12 > 0:

P{d(X1,X2)≥ α12}≤ exp
(
− 2|X1||X2|

g2(|X1|+ |X2|)
(α−µ12)2

)
+K

(7)

with K = P{X ∈C} where C ⊂ Ω is the set of outliers.
If Cc

Ω = [N;N′] defines the complementary of C in Ω, then
g = N′−N.
See [9] for a similar proof of this proposition.

The parameter g must be chosen such that the
probability K can be ignored. In this work, we use
g = max

x∈|I|
I(x)−min

x∈|I|
I(x) which ensures a negligible value of

K compared to δ . The parameter µ12 may be estimated using
an assumption on the noise model. In MRI sequences the
noise model is assumed to follow a Rician distribution [6].
For large signal intensities the noise distribution can be
considered as Gaussian (Xi ∼N (mi,σ) for 1 ≤ i ≤ N). In
this case, the expectation of the function f can be computed
which leads to:

µ12 =
2σ

(√
|X1|+

√
|X2|

)
√

2π|X1||X2|
(8)

This computation is simply made using well-known proper-
ties for the combination of Gaussian models.

Given two observations Ri, R j of two statistical regions Xi
and X j, the merging is guided by the following predicate:

P(Ri,R j) =

{
true if |Ri−R j| ≤ αi j(δ )
false otherwise

(9)

with αi j(δ ) = g

√
|Ri|+ |R j|
2|Ri||R j|

ln
(

1
δ −K

)
+ µi j.

Compared to the approaches [10], [5], we do not make
the assumption that in the same statistical regions E[U1−
U2] = 0. In fact, this is not the case for noisy images.
Using equation (8), we can remark that such an assumption
is only valid under the law of large number and is not
verified for small regions. This last point is illustrated in
our experimental results.

E. Merging algorithm

Following our general setting for the computation of the
merging predicate, let us now introduce the whole segmen-
tation algorithm that includes an original merging order.

Given an image I, the regions adjacency graph (RAG) G
is composed of a set of vertices V representing the observed
regions (initially reduced to a single pixel) and a set of edges
E encoding the adjacency of regions in 4-connectivity. A
weighted edge is then a triplet composed of a couple of
nodes (vi,v j) with their corresponding weight wi j. In our
work, this weight is defined as the ratio of the value of the
criterion (left side of (9)) and the computed threshold (right
side of (9)) as follows:

wi j =
|Ri−R j|
αi j(δ )

(10)

Using the above formula, the predicate P between 2 regions
Ri and R j is true if and only if the edge ei j between the
associated vertices vi and v j is lower than 1. Our merging
order on the edges ei j corresponds to a decreasing order on
the probability of d(Ri,R j) > αi j (Eq. (7)). One may show
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that such a merging order is equivalent to an increasing order
on the edges weights.

IV. EXPERIMENTAL RESULTS

Our database is composed of 5 p-MRI sequences. Each
p-MRI sequence has been acquired sequentially on 5 levels
along the little axis at instants corresponding to the same
phase of the cardiac cycle. We have thus 25 sequences
of 2D images. We present here a result obtained on a
p-MRI sequence corresponding to an important breathing
movement.

A. Cardiac regions tracking

Fig. 1. Tracking of cardiac structures using our tracking algorithm - from
left to right: tracking results on frames #16, #24, #30 and #40.

The myocardium has been manually segmented on frame
#15 of the heart’s basal level and has been tracked all along
the perfusion sequence (backward and forward). Concerning
the local motion estimation step, the initial block size has
been set to 32×32 and can be divided until a size of 16×16.
The values of α and β have been respectively set to 1 and
5. To present the results of our tracking algorithm, we have
extracted four frames from the basal level perfusion sequence
after registration (Fig. 1).

B. Segmentation of hypoperfused regions

Fig. 2. Temporal segmentation of hypoperfused region inside the my-
ocardium (frame #30, #39 and #44).

In Fig. 2, we display the results of our segmentation algo-
rithm on 3 frames of the same p-MRI sequence. These results
have been obtained by setting the unique parameter δ = 0.4.
From this segmentation, the proportion of hypoperfused areas
inside the myocardium has been automatically estimated to
10,97%, 10,26% and 6,7% for respectively frames #30,
#39 and #44. The myocardium is also divided following the
model recommended by the American Heart Association.
Combining this last model with our segmentation results
leads to the identification of the corresponding supplying
artery.

Fig. 3 shows the segmentation of hypoperfused regions
using the algorithm from [5] on the left and our one on
the right. The left segmentation result has been obtained by

setting δ = 0.1, it is composed of 5 regions. The right one
has been obtained by setting δ = 10−4 and gives 4 regions,
the standard deviance of the noise has been estimated to
σ = 35.36 and the parameter g = 7040. We can see that the
hypoperfused region (low contrast on the right side of the
myocardium) is accurately segmented by our method while
the other method does not perfectly enclosed the region.

Fig. 3. Segmentation of hypoperfused regions inside the myocardium in
MRI perfusion imaging using respectively the algorithm from [5] (second
column) and our one (third column).

V. CONCLUSION

In this paper, we have proposed an efficient and robust
tracking algorithm of the cardiac structures along p-MRI
sequences and a region merging segmentation algorithm
designed to segment small regions of interest in noisy
images. These two algorithms constitute a first step towards
an accurate characterization of quantification parameters. Our
on-going research is directed towards the computation of
quantification parameters from such a segmentation.
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