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Abstract— In diagnosing diseases and planning surgeries the
structure and length of blood vessels is of great importance. In
this research we develop a novel method for the segmentation of
2-D and 3-D images with an application to blood vessel length
measurements in 3-D abdominal MRI images. Our approach
is robust to noise and does not require contrast-enhanced
images for segmentation. We use an effective algorithm for
skeletonization, graph construction and shortest path estimation
to measure the length of blood vessels of interest.

I. INTRODUCTION

Certain diseases have an influence on the length of the
aortic blood vessels of the abdomen. In diagnosing such
diseases a method to compare the lengths of blood vessels of
interest to the length of healthy blood vessels can be of great
importance. Our goal is to segment the abdominal aorta from
the set of 3-D MRI images and apply binary skeletonization
algorithm in order to calculate the length of the blood vessels
of interest.

There exist a significant number of methods based on
mathematical morphology [1], commonly used for medical
image segmentation. Two fundamental morphological oper-
ators used are erosion and dilation. For these operators the
structuring element is an object of carefully chosen shape and
size to best correspond to the shape of the object intended for
segmentation. Based on these operators, opening and closing
operators are defined as sequential dilation after erosion and
erosion after dilation, respectively. This way priorities are
assigned to either darker or brighter objects in the image.
A more advanced approach is explained in [2], where mor-
phological profiles and differential morphological profiles are
used that represent a composition of morphological openings
and closings with increasing size of the structuring element.
This method is prone to errors in the size of segmented
regions and is not robust to noise. An improvement to this
is proposed in [3], where the solution is to examine the
differences between the original pixel value and the value of
the opening or the closing at the given scale, depending on
which of these has the highest value. However, this method
assigns a value to a pixel based on the pixel values of the
structuring element, which introduces a problem of a proper
threshold value selection in order for all the blood vessels
to get segmented. The threshold value would have to vary
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not only between neighboring slices, but also for different
object in the same slice, making this method inapplicable in
our case.

Instead of assigning a background value or a foreground
value to the processed pixel for the certain structuring
element, we propose a method that compares the pixel value
to the average value of all pixels in the structuring element.
The value we assign to the processed pixel is equal to the
maximum size of the structuring element, thus prioritizing to
similar structures, and making the segmentation process less
dependent on individual pixel values. Most of the related
works on this topic use angiography images (which are
obtained by a half-invasive method of injection of contrast
substance into the blood vessels) [4], and the developed
algorithms are not applicable on data sets which are not
contrast-enhanced. The main advantage of our method is
that we designed it for an application on images that are
not contrast-enhanced, but which can be successfully applied
to contrast-enhanced images as well. The proposed method
takes into account the value and the morphology of the
object to be segmented, while being robust to noise and
sudden changes in shape in the case of the 3-D data sets.
Our method stands out in situations when contrast-enhanced
images can not be obtained or if the segmentation and length
measurement results need to be obtained in a short period of
time.

II. THE PROPOSED METHOD

In order to make our method robust to noise and sudden
changes in intensity of objects in neighboring slices, we base
our method on a combination of structure, size and average
intensities of the object for segmentation. Our approach is
to measure the extent to which equidistant pixels “influence”
the currently processed pixel. We do this by comparing the
ratio of the average value of the equidistant neighborhood
and the value of the processed pixel to the predefined
segmentation coefficient. This method shows robustness to
noise because the result of the segmentation depends on the
wider neighborhood of the pixel, thus relying more on the
structure of the neighboring pixels than on their values which
are corrupted by noise. The new value of the pixel is equal to
the number of sequential radii for which the calculated ratio
does not exceed the predefined segmentation coefficient. We
segment the image either by comparison to the maximum
distance inside the image or by setting a threshold function
corresponding to the maximum radius of the object that we
want to segment.
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(a) Test image (b) n = 2.5, M = f(p)(c) n = 3.5, M = f(p)

(d) n = 4.5, M = f(p)(e) n = 5.5, M = f(p) (f) n = 1, M = fmax

Fig. 1: Original test image (37 × 37) in (a), transformed
images for different values of parameter n in (b), (c), (d),
(e), and the image of maximum pixel distances (f).

Let p ∈ Z2 denote the pixel of image I in the discrete
Cartesian grid with a value f(p) from a range of continuous
gray scale values f(p) ∈ [fmin, fmax]. For a given point p
of the image I , with coordinates (xp, yp) we define the set
of equidistant pixels at the radius r ∈ N as in (1).

Er(p) :
{
q ∈ I | (r − 1)2 < (q − p)2 ≤ r2

}
(1)

For this set the sum of all values can be expressed as in (2):

Sr(p) =
∑

x

∑
y

f(x, y), (x, y) ∈ Er(p), r ∈ N (2)

In (3) we assign a new value for the pixel p equal to the
maximum radius value R, such that for all radius values
r ∈ {1, .., R} the average value of all equidistant pixels does
not exceed the predefined segmentation coefficient n:

dn(p) = max
R

(
∀r ∈ {1, ..., R},

∣∣∣∣ Sr(p)
Nr(p)

· 1
M

∣∣∣∣ ≤ |n|) , (3)

n ∈ R, M ∈ [fmin, fmax]

where Nr(p) denotes the number of equidistant pixels for the
pixel p. Coefficient M is defined as M = |f(p)− fdesired|,
where fdesired indicates the average value of the scope of
gray scale values of the object we want to segment. The
closer the value of the point f(p) is to the desired value
fdesired, the closer the newly assigned value dn(p) is to zero.
We will show later that for the values of M approaching zero
for a certain object, we will be able to segment the object
for a wider range of segmentation coefficient n. If there is
no preferred value of the objects to be segmented, a constant
value of the coefficient M can be used M = const, which
assigns the same weighting factor to all gray scale values. In
this case, the newly calculated value of the point dn(p) does
not depend on the original point value f(p), but only on the
values of equidistant points of the point p. The results for the
proposed method are illustrated in Fig. 1. We observe that

with the increase of segmentation coefficient n, only circle-
like structures with values close to fdesired are preserved.

A. Segmentation by comparison to maximum distance

For each of the transformed images in Fig. 1 a certain
pattern in the background of the objects of interest can be
observed. We propose an approach for segmentation that
separates foreground objects from this background pattern.
As shown in (4), for each value M there exists a coefficient
value nmin, for which the radius growing condition is always
fulfilled:

nmin =
∣∣∣∣fmax ·

1
M

∣∣∣∣ (4)

For example, if M = fmax = const and n = nmin = 1
each pixel p will be assigned a new value dn(p) equal to the
maximum Euclidean distance dmax from the pixel p to any
other pixel in the image (5),

dmax(p) = max
∀(x,y)∈I

(√
(x− xp)2 + (y − yp)2

)
(5)

as represented in Fig. 1f. A straightforward way to segment
the objects in the image is to separate the background pixels
(pixels with value dmax(p)) from the foreground pixels
(pixels with value different than dmax(p)), (6),

Ln(p) =
{

1, dn(p) 6= dmax(p)
0, dn(p) = dmax(p) (6)

where Ln(p) denotes the decision making function. Results
for this segmentation algorithm are presented in the second
row of Fig. 2. An important observation is that the maximum
possible value that can be assigned to each pixel depends
on the size of the image, but this does not affect the seg-
mentation result. This means that the proposed segmentation
algorithm depends only on the coefficient n. The drawback
of the proposed method is that the distance calculation is
computationally demanding, which can make it inefficient for
use on larger images. We propose a solution to this problem
by using a threshold value for segmentation.

B. Segmentation by thresholding

In order to enhance the computational efficiency of the
proposed method, we introduce a threshold in the calculation
of the new value for the pixel as shown in (7):

dn,t(p) = max
R

(∀r ∈ {1, ..., R}, r ≤ t, |a| ≤ |n|) , (7)

a =
Sr(p)
Nr(p)

· 1
M

, n ∈ R, t ∈ N, M ∈ [fmin, fmax]

The decision making function in this case is defined in (8).

Ln,t(p) =
{

1, dn(p) < t
0, dn(p) ≥ t

(8)

This method incorporates the segmentation process directly
into the calculation of new pixel values. The calculation
holds when the predefined threshold value is reached and
in that way needless computations are not performed. The
introduction of a threshold raises a question of choosing the
threshold value. The pixel with the largest newly assigned
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(a) n = 2.5, M = f(p)(b) n = 3.5, M = f(p)(c) n = 4.5, M = f(p)

(d) n = 2.5, M = f(p)(e) n = 3.5, M = f(p)(f) n = 4.5, M = f(p)

(g) n = 2.5, t = 10 (h) n = 3.5, t = 10 (i) n = 4.5, t = 10

Fig. 2: Transformed images for different values of parameter
n in (a), (b), (c), corresponding segmentation based on
comparison to maximum distance image in (d), (e), (f) and
corresponding segmentation based on thresholding in (d),
(e), (f). For the optimal threshold value, better segmentation
results are obtained for smaller values of n.

value which we want to segment is situated in the center of
the object for segmentation with the largest radius. Hence,
the optimal threshold value has to be somewhat larger than
the largest radius of all the regions that need to be segmented.
Also, the threshold value t has to be smaller than the
smallest maximum distance dmax(p) in the image in order to
avoid segmentation of any background pixels. This distance
corresponds to the maximum distance of the central pixel in
the image and is equal to the radius of the circumscribed
circle of the image. According to this, for an image Im×n

containing an object for segmentation of the maximum radius
rmax, the threshold t has to fulfill the condition stated in (9).

rmax < t <

√
m2 + n2

2
(9)

Apart from reducing the computational complexity, we can
obtain better segmentation results for lower values of seg-
mentation coefficient n if the optimal threshold value is
found, as shown in the third row of Fig. 2. The optimal
threshold value is not always easy to determine, especially
in the case of blood vessels in 3-D images, where the same
blood vessel can have great variation in size in different
slices. Setting the threshold value equal to the maximum
radius value of the blood vessels in the 3-D image resolves

this problem.

C. Algorithm for the 3-D segmentation

The 3-D segmentation algorithm can be realized by ex-
tending a 2-D version of the proposed method. However, the
3-D version of the proposed method would be computation-
ally demanding for large data sets, which would significantly
prolong the execution time. On the other hand, if the seed
points for region growing for each slice of the 3-D image
are well selected, the 2-D version can be efficiently applied
for the segmentation of the whole 3-D set. We propose
a region growing algorithm that builds on the previously
described method for segmentation criteria. In the first slice
the initial seed point has to be selected, after which the region
growing is performed and new seed points are calculated
for the next slice based on the previously segmented area.
This principle is repeated iteratively for each slice in the
3-D image. Each value of the segmentation coefficient n
produces one segmented candidate image. After a sufficient
number of segmented candidates have been generated, we
choose the one that is the most similar to the previous
segmented slice by comparing segmented areas, inner radii
of regions, center point distances and overlapping areas of
segmented regions. Different candidates can also be obtained
by varying the threshold parameter t. This approach causes
many recalculations without showing significant difference
in segmented candidate images. Instead, we propose to keep
the threshold at a predefined constant level, and to vary only
parameter n. Our idea is to find the maximum ratio of the
average value of the equidistant neighborhood and the value
of the processed pixel for the threshold t ∈ N number of
radii, as shown in (10).

dt(p) = max
r∈{1,...,t}

(∣∣∣∣ Sr(p)
Nr(p)

· 1
M

∣∣∣∣) . (10)

Knowing the value dt(p), the pixel can be segmented for
different values of n only by comparing these two values, as
in (11).

Ln,t(p) =
{

1, dt(p) > n
0, dt(p) ≤ n

(11)

The significant advantage of this approach is that once the
maximum average value for a pixel dt(p) is calculated,
it does not need to be recalculated again for a different
segmentation coefficient value n.

D. Skeletonization and length measurement

In order to calculate the length of blood vessels, we use
our 3-D skeletonization and graph construction algorithm de-
scribed in [5] on the segmented 3-D images. Since the spatial
resolution of processed data sets is poor, discontinuities in
blood vessels in neighboring slices may occur. We apply
interpolation to solve this problem as proposed in [6] in the
case of segmentation of liver blood vessels, after which we
generate the skeleton image and the graph for the segmented
3-D image. The length is calculated by graph convergence
and best path selection between user defined starting and
ending points in the segmented 3-D image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Segmentation results obtained using the proposed
method in (a), (e), and corresponding calculated paths of
aortic blood vessels in (b), (f), hand made segmentation in
(c), (g) and corresponding calculated paths in (d), (h).

III. RESULTS

We tested our algorithm on five data sets of MRI images
of the abdomen, with spacing between slices of 5.5mm and
pixel spacing 1.32mm×1.32mm. Misalignment, disappearing
and merging of blood vessels in neighboring slices is present
due to the low resolution. The blood vessels in our data
sets were the darkest objects in the image, so we used
fdesired = 0 in our experiments, although this is not the
optimal value (the optimal value would be somewhat larger
than 0). The segmentation parameter n varied from 2.5 to
4.5 and the threshold value t was set to 30 pixels. In order
to evaluate our method, we manually segmented aortic blood
vessels in the data sets and measured the lengths by using
the same skeletonization and graph construction technique as
in our algorithm. Results illustrated in Fig. 3 show that leaks
are present in the segmentation, but that they do not affect
the skeletonization and path selection. Furthermore, results
of length measurements presented in Table I show little
deviation between calculated lengths using our algorithm and
calculated lengths in manually segmented images. Average
execution time of a data set with 100 slices is 15 to 20
minutes on a 2GHz processor.

TABLE I: Calculated lengths for the hand-made segmenta-
tion and our segmentation algorithm

Set Original length (mm) Our method (mm) Deviation (%)

1 338 348 2.87

2 337 332 1.48

3 754 722 4.24

4 375 382 1.83

5 381 386 1.29

For the visualization of this dataset we used the Medical
Imaging Interaction Toolkit (MITK) [7].

IV. CONCLUSION

We introduced a novel method for the segmentation of 2-
D and 3-D images with an application to blood vessel length
measurements in 3-D abdominal MRI images. We have
proposed segmentation approaches based on comparisons
to maximum pixel distances and on thresholding. The seg-
mentation based on comparison to maximum pixel distance
proved to be easy to set because it uses only parameters n
and fdesired, but is also computationally inefficient. For this
reason we introduced a threshold value into the proposed
method, which significantly decreased computation time and
allowed us to use this method in segmentation of the 3-
D data sets. Our automatic method for segmentation of 3-
D images stands out in situations when contrast-enhanced
images can not be obtained or if the segmentation and length
measurement results need to be obtained in a short period of
time. An effective algorithm for skeletonization, graph con-
struction and shortest path estimation were used to measure
the length of blood vessels of interest. Obtained segmentation
results show good resemblance to hand-made segmentation
and calculated lengths do not show significant variation com-
pared to calculated lengths of hand-made segmentation. The
proposed algorithm can be implemented for segmentation of
other organs or tissues in 3-D medical images by varying the
segmentation parameters and introducing different conditions
for connectivity of regions in neighboring slices.
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