
  

  

Abstract — The prognosis of breast cancer patients improves 
with early and accurate diagnosis.  A small clinical study was 
conducted with 21 women having a single nonpalpable breast 
lesion, each detected mammographically with later pathology 
confirmation.  Elasticity images were acquired on each patient 
to test for the ability to differentiating malignant and benign 
lesions.  The mechanical relaxation time T1 images showed a 
tissue-specific T1 contrast that is negative for all 11 malignant 
lesions and positive for all 10 benign lesions.  Strain images 
were estimated using a regularized multi-scale optical flow 
(ROF) algorithm. Adjustments to the input parameters to the 
ROF and their subsequent effects on T1 estimation and 
computation time are shown to have a strong effect of 
diagnostic performance. 

I. INTRODUCTION 
reast cancer is a leading cause of cancer death in woman 
[1]. A key factor in mortality prevention is early 

detection and diagnosis of suspicious masses. The first step 
to the clinical diagnosis of breast cancer is the detection of 
the breast tumor. This is usually done via manual palpation, 
and followed up with anatomical imaging and finally, 
biopsy. Although biopsy is the gold standard for diagnosis, 
the procedure is invasive, expensive and carries some risk. 
Noninvasive diagnostic imaging methods are therefore being 
developed to increase specificity and reduce the number of 
unnecessary biopsies performed on women each year.  
 During tumor development, inflammation is 
commonly observed in early stages.  The extracellular 
matrix (ECM) of local breast stroma is altered by the 
cancerous growth [2], which often leads to a change in the 
elastic properties of the tissue. Elasticity imaging is a means 
for describing the spatial distribution of viscoelastic tissue 
properties [3], and is used primarily for diagnosis rather than 
detection.   
 Several groups have applied elasticity imaging to 
the diagnosis of focal breast lesions.  The consensus is that 
the relative size of palpable lesions in strain images 
compared with that in spatially-registered sonograms was a 
sensitive diagnostic feature [4-6]. Palpable malignant lesions 
often have some degree of desmoplasia that makes them 
appear larger on strain images than sonograms.  This feature 
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is much less reliable for early stage malignant lesions that 
are nonpalpable.  

 We employ a quasi-static [7] ultrasonic method for the 
viscoelastic breast imaging of a small group of patients. 
Echo movements are tracked by a broadband ultrasonic 
probe as it is gently pressed into the skin surface. Step-force 
amplitudes of 3-6 N are applied suddenly and handheld 
constant for about 10-20 s while a sequence of 
radiofrequency (RF) echo frames are recorded to track the 
slow movement of tissue under a load.  The patterns of time-
varying strain suggest that breast tissues exhibit viscous 
creep similar to hydropolymers.  A regularized optical flow 
(ROF) algorithm is applied to the RF echo frames to 
estimate the time sequence of strain images. Viscoelastic 
(VE) properties are found by analyzing the time-varying 
strain at each pixel, fitting it to a Kelvin-Voigt constitutive 
model to estimate viscoelastic parameters. Performance of 
the ROF strain algorithm for the purpose of estimating VE 
tissue parameters was evaluated for different image 
formation variables.  Those leading to maximum diagnostic 
performance are described.    

II. MATERIAL AND METHODS 

A. Patient Selection 
Patients were randomly selected through the breast clinic 

at UC Davis Medical Center in Sacramento CA.  
Permissions were obtained through an approved IRB 
protocol from 26 patients with a single, nonpalpable lesion 
identified by mammography prior to core-needle biopsy. 
Patient ages ranged from 28 to 72 years, and tumor diameter 
ranged from 0.5 to 2.5 cm. All lesions were potentially 
malignant and required further tissue analysis.  The data 
from five patients were excluded due to poor acquisition that 
prevented processing. Biopsy-confirmed diagnoses are 
summarized in Table I.  Details are given in [8]. 

B. Patient Imaging Techniques 
Viscoelastic imaging techniques for breast tissue have 
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TABLE I 
BREAST LESION PROFILES 

Disease 
Type Diagnosis Tumor Grades 

Benign 
(10) 

Fibroadenoma (7) 
N/A Fibrocystic Change (2) 

Dense Collagenous Stroma (1) 
Malignant 
(11) 

Infiltrating Ductal Carcinoma 
(8) 

Grade 1 (4) 
Grade 2 (4) 
Grade 3 (1) 
Not scored (2) 

Invasive Lobular Carcinoma (2) 
B-cell lymphoma (1) 
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been described previously [8]. A Siemens Sonoline Antares 
ultrasound scanner was used with a VF10-5 linear array 
transducer operating at 8 MHz to record RF echo data. 
Patients were positioned supine and breasts were scanned 
anterior-posterior with the chest wall as compression 
support.  Patients were instructed to hold their breath during 
the 12-15 s acquisition to minimize breast motion. The RF 
acquisition frame rate was 17 fps. A downward compressive 
force of approximately 4 N was manually applied in 1 s via 
the transducer surface by the sonographer. Sridhar [7] 
showed that with force sensor, sonographers with limited 
training were able to keep the force constant within ±0.24 N.  

C. ROF Strain Algorithm Parameters 
Each strain image is formed from the comparison of two 

RF echo frames. Therefore, a total of K frames would 
produce a time series of K-1 strain images. The regularized 
optical flow algorithm [10] estimates the displacement fields 
between adjacent frames recorded during compression, and 
the derivative of the sum displacement field is used to find 
the strain image.  The general equation can be written as 
[10] 

( ) ( )( )dEdEd
d 21minargˆ α+=

Ω∈
.  (1) 

Equation (1) minimizes the energy of the cost function to 
estimate displacement d̂ . The cost function is constrained 
by two components: conservation (E1) and regularization 
(αE2), where α is a positive regularization coefficient.  E1 
assumes that the echo amplitude is conserved during 
deformation (minimal decorrelation). The regularization 
term stablizes the solution by minimizing local displacement 
variations [10]. Displacement estimates are found by 
minimizing the total energy, with coefficient α weighting the 
relative contributions of E1 and E2.  

There are three key parameters that must be adjusted to 
apply the ROF strain algorithm to clinical data: α, the search 
window size, and the numbers of spatial scales over which 
RF echo data are compared.  

ROF employs a multi-scale approach to displacement 
estimation optimize the convergence of solutions while 
avoiding local minima.  At each scale level 0 ≤ i ≤ I, the 
image grid is partitioned into Ni equal sized blocks [12] 
where N stands for the number of blocks, and equation (1) is 
estimated. The highest scale level (coarsest) estimation is not 
constrained by the regularization term, thus allowing an 
initial global minimum to be found. At the lowest scale level 
(finest), the block size is 4x1 pixels, which corresponds to 
the ratio of axial and lateral block dimensions [12]. The 
number of iterations required for the solution to converge 
increases dramatically as the scale becomes finer. By 
changing the number of scale levels, both the computation 
and convergence time will be affected [10].  

The search window size depends on the percent tissue 
compression that occurs between adjacent RF frames 
recordings. A search window that is too small may render 
the algorithm unable to find the global energy minimum. A 

search window that is too big may increase computation 
time as well as noise, which adds to the estimation 
uncertainty.  

These three parameters were varied to check for the 
differences in the visual appearance of the strain images, the 
computation time, and the resultant T1 estimates. α is varied 
while the number of scale levels remained at 6 (I = 5) and 
the search window size remained at 8×2 pixels. The number 
of scale levels is then varied while α remained at 40 and the 
search window size remained at 8×2 pixels. Finally, the 
search window size is varied while α remained at 40 and the 
number of scale levels remained at 6. 

D. Curve Fitting 
A time series of strain images are formed as described in 

Section II (C) using standard multicompression acquisition 
[9] and the ROF strain imaging algorithm [10]. The creep 
curve is generated for each strain image pixel (or small 
group) by plotting strain over time. The VE phase of the 
curve begins immediately after the initial compression of 
tissue. VE parameters are extracted from the curves by least-
squares fitting of the data to a rheological model. A first 
order Kelvin-Voigt model [7, 11] is used because our 
acquisitions were no longer than 15 s and thus did not 
engage the long-duration VE response:  

( )( )110 /exp1)( Ttt −−+= εεε  .               (2) 
є0 is the instantaneous elastic strain amplitude occurring 
immediately after compression (Fig. 1), є1 is the viscoelastic 
strain amplitude, and T1 is the retardation time characterizing 
the delay in the maximum strain response. Strain delays in 
stroma are from frictional resistance due to movement of the 
ECM in viscous interstitial fluids [7]. The three 
aforementioned VE parameters are estimated for the entire 
acquired image area, and we obtain a set of four images (B-
mode, є0, є1 and T1) for every patient data collected.  

E. Parametric Contrast 
Small pixel areas of 10×30 or 10×15 were selected in one 

location within the lesion and another location in the 
background of each patient image. Average B-mode, є0, є1 
and T1 values are estimated from these regions.  

The goal of VE imaging is to provide tissue-specific 

 
Fig. 1.  Typical viscous creep curve and corresponding viscoelastic (VE) 
parameters for glandular breast tissue. ε0 describes the instantaneous 
elastic strain. ε1 describes the viscoelastic strain amplitude.  Compression 
is applied from time t = 0 until t0 during which the instantaneous elastic 
strain is measured. The viscoelastic curve lasts 12 to 15 seconds. 
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contrast that maximizes diagnostic performance relative to 
biopsy findings.  Lesion contrast is calculated using  

( ) Average
Difference

XX
XX

C
backgroundlesion

backgroundlesion =
+

−
=

2/
,        (3) 

where Xlesion and Xbackground represent any of the four 
parameters described in Section II (E) from the lesion and 
background tissue areas of a patient scan. 

III. RESULTS 

A. Regularization Coefficient, α 
Coefficient α was varied between 2 and 120 for a time 

series of strain images, and VE parameters were extracted 
for an infiltrating ductal carcinoma (IDC) lesion. α is 
proportional to the smoothness of the strain image; Fig. 2a 
shows the resultant strain images when the coefficient is too 
small and Fig. 2b shows a normal/smooth strain image. 
Strain noise suppression increases with α at the cost of 
spatial resolution. The recommended α value range of 2 to 
10 [10] was unable to sufficiently minimize decorrelation 
noise, so we adopted a value of 40 for processing all patient 
data.  

T1 values versus α are plotted in Fig. 3 for a malignant 
lesion.  T1 values are stable for α > 40 where much of the 
strain noise is suppressed.  VE lesion contrast calculated in 

this range provided a reliable separation between benign and 
malignant lesions, thus improving diagnostic performance.  

B. Number of scale levels 
The default number of scale levels as determined in [10] 

is I = 5 (6 levels). The anisotropic ratio of 4 is used to 
account for the ratio of axial-to-lateral block size. The 
number of scale levels used for our patient data was 6.  The 
effect of the change on the computation time needed to 
process 166 strain images is shown in Table II. 
Computational times for 7 scale levels are similar to those 
for 5 scale levels. However, strain images resulting from 5 
scale levels failed to detect small parts of the breast tissue 
whereas the strain image resulted from 7 scale levels 
showed additional decorrelation noise. Therefore, the 
optimal number of scale levels for this study is 6. 

C. Search Window Size 
The default search window size was 8×2 pixels 

(axial×lateral). For comparison purposes, other search 
window sizes were used that were determined to be optimal 
for smaller and larger between-frame compression 
percentages in [10]. The resultant ROF computation time to 
process 166 strain images and the resultant T1 contrast 
estimates are shown in Table III. Although different search 
window size yielded similar T1 contrast values (T1 = 0.8814 
± 0.0066), the computation time for the strain image 
sequence increases as the window size increases. A larger 
window size is ideal when there is a bigger change in the 
percentage strain between adjacent frames. For this patient 
study, a search window size of either 4×1 or 8×2 pixels is 
recommended due to the low percentage of strain between 
frames. 

D. Patient data plot 
Statistical analysis of image values applied to nonpalbable 

breast lesions as described in [8] showed little significant 
contrast in B-mode, ε0 and ε1. T1 was the only discriminating 
parameter found. VE contrast values are calculated using 
equation (3) and a scatter plot of elastic strain (є0) contrast 
versus T1 contrast for each of the 21 patients is shown in Fig. 

 
Fig. 2.  The lesion region is indicated with black arrows in (a) Strain image 
ε0 when regularization coefficient α.= 2. Not enough noise suppression. (b) 
Strain image when α.= 5. There is some noise suppression. (c) Strain image 
when α.= 10. Minute noises still exist.  (d) Strain image when α.= 40. The 
image is smooth. 

TABLE II 
T1 COMPUTATION TIME FOR DIFFERENT SCALE LEVELS 

Number of Scale 
Levels 

ROF Computation Time 
(min) 

5 69.2 

6 80.8 

7 91.3 

TABLE III 
T1 COMPUTATION TIME FOR DIFFERENT SEARCH WINDOW SIZE 

Search Window 
Size 

ROF Computation 
Time (min) T1 Contrast 

4×1 44.3 -0.8739 

8×2 85.8 -0.8865 

12×3 157.7 -0.8838 

 
Fig. 3.  T1 estimates from the lesion and background tissues collected at 
different α values. Values below 40 shows bias in T1 estimates because 
of strain noise, as shown in Fig. 2. 
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4. In this figure, patients with malignant and benign lesions 
are clearly separate by the division line at T1 contrast = 0. T1 
contrast is negative for all malignant lesions and positive for 
benign lesions studied.     

IV. DISCUSSIONS 
In our study, strain images are formed using a regularized 

multi-scale optical flow algorithm developed by Pellot-
Barakat et al. [10]. Images of viscoelastic parameters є0, є1, 
and T1 are produced by curve fitting time-varying strain 
(creep) curves obtained from fitting strain sequences to an 
appropriate constitutive model. Parameters used in the 
formation of the strain images can influence the shape of the 
curve, and, subsequently, images of the VE parameters.  

If a data set is collected properly, then the default options 
(as mentioned in [10] for breast tissue except for the 
regularization coefficient) yields a series of strain images 
that produces relatively smooth creep curves. However, in 
the case of poor echo data acquisition caused by 
inappropriate patient or transducer movement, the strain 
images will contain significant decorrelation noise and the 
algorithm would be unable to produce a creep curve that 
follows the model, e.g., Fig. 1.  Nevertheless, adjustments 
can be made to the ROF algorithm parameters that suppress 
the noise without greatly increasing computational time or 
degrading spatial resolution. 

We are also attempting to adapt the ROF algorithm for the 
viscoelastic imaging of tissue-mimicking phantoms using 
the Sonix RP ultrasound system (Ultrasonix Medical 
Corporation, CA). The advantage of the Sonix RP system is 
the ability to program most transmit and receive aperture 
features, as well as the temporal pulse profile.  However, the 
Sonix RP scanner has only half the sampling frequency as 
the Antares and the linear array pitch is about twice that of 
the Antares linear array.  Since the ratio of axial and lateral 
sampling is different than that of the Siemens Antares 
scanner, a new anisotropic block value is needed. The 
regularization parameter 　 may need to be adjusted to suit 　
the phantom image processing. A good place to start would 
be testing α values between 2 and 10 to find a balance 
between strain smoothness and accuracy. The number of 
scale levels should remain at 6 initially, since this is shown 
to produce the optimal strain image. If decorrelation noise is 

significant, the number of scale levels should be lowered. 
The total percentage strain of the phantom is much higher 
than that of the breast tissue. Therefore, a larger search 
window is needed to locate global minimums.  

V. CONCLUSIONS 
Diagnosis of nonpalpable breast lesions can be 

significantly improved by the inclusion of viscoelastic 
features information. The ROF strain image processing 
algorithm must be fine tuned to adapt to the clinical patient 
scans. It is necessary to find the balance in noise 
suppression, strain estimation accuracy and computation 
time in order to achieve the optimal strain images that can be 
used for VE parameter estimations. The preliminary clinical 
study has demonstrated the ability of viscoelastic parameters 
in the characterization and differentiation of nonpalpable 
breast lesions. The addition of viscoelastic features into the 
diagnostic feature space can aid physicians in making more 
accurate and prompt diagnosis of patients with early breast 
cancer.  
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Fig. 4.  Scatter plot of patient contrast values for two parameters, є0 
and T1. A dotted line drawn at T1 contrast = 0 divides malignant and 
benign lesions. However, є0 contrast offers no significant 
discriminability. 
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